Choose a Product

  • Geistlich Bio-Gide®

    1-20151

  • Geistlich Bio-Oss®

    1-20111

  • vallos® mineralized allograft granules

    Select Option

BIOBRIEF

Selecting Biomaterials for Combined Complex Defects

Irina F. Dragan, DDS, DMD, MS, eMBA

THE SITUATION

The patient called the office complaining of sensitivity and swelling in the maxillary left quadrant. He was seen and prescribed an antibiotic. Tooth #12 was deemed hopeless, and the peri-apical and radicular lesion presented on the radiograph extended significantly on the mesial aspect, impacting the interproximal bone level for tooth #11. Patient presents with implant supported restorations distal to the affected area and was concerned about the infection spreading to that area as well. The area was treated successfully, and the patient was pleased with the outcome, allowing him to preserve the tooth, on the mesial aspect of the lesion and the implant distally.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system/Non-smoker Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

THE APPROACH

The goals of the procedure were to eliminate infection, the source of pain, and reduce periodontal problems to the adjacent tooth and implant. Full thickness flap was reflected, #12 was removed and the socket was debrided and irrigated. A peri-radicular lesion was removed and submitted for histopathological exam.

Initial presentation – buccal view.
Full thickness flap elevation exposing the complex clinical situation.
Alveolar socket after the tooth removal exposing the loss of bone on the distal of tooth #11, prior to the debridement of the granulation tissue and root preparation.
Adaptation on the buccal defect prior to placement of bone grafting with vallos® mineralized cortical cancellous mix granules (bottom) followed Geistlich Bio-Oss® (top).
Post adaptation with Geistlich Bio-Gide® for alveolar ridge preservation and guided tissue regeneration, followed by final suturing of the site using ePTFE material.
Radiographic overview of the clinical procedure: initial presentation with the bony defect impacting distal of #11 and #12 – mesial and inter-radicular, site after the tooth #12 was extracted, radiographic bone fill of the defect post-operative.
Post-operative healing of the site, 4 weeks after the procedure was completed.

“A localized infection can easily spread and impact adjacent teeth and implants. It is critical for clinicians to intervene as soon as possible to prevent further complications. Patient education and motivation is key to successfully treat these types of clinical situations encountered in a daily practice.”

— Dr. Irina Dragan

THE OUTCOME

The combined defect: #11 distal guided tissue regeneration and #12 alveolar ridge preservation for #12. This area was treated with vallos®, Geistlich Bio-Oss Collagen®, and Geistlich Bio-Gide®. The xenograft was placed in the apical portion of the socket and the allograft towards the coronal surface.

Healing of the site at 4 weeks post-operative.

Considering today’s advancements in regeneration we are able to successfully treat complex clinical scenarios that involve combined therapeutic applications, such as guided tissue regeneration and alveolar ridge preservation.”

Dr. Irina Dragan

Periotomes were able to support with an atraumatic extraction of tooth #12 and maintaining as much as possible the soft and hard tissue present in this compromised area.”

Dr. Irina Dragan

Irina F. Dragan, DDS, DMD, MS, eMBA

Periodontology and Implant Dentistry
Dr. Irina Dragan is board certified and an examiner for the American Board of Periodontology and Implant Dentistry. She is part-time faculty in postgraduate periodontics at Harvard School of Dental Medicine and an adjunct associate professor of periodontology at Tufts University School of Dental Medicine. She is a periodontist and clinical researcher at The Perio Studio, a practice limited to periodontology and implant dentistry in Boston, MA.

Sorry, you do not have permission to view this content.

BIOBRIEF

Odontogenic Keratocyst Management

Bassam Kinaia, DDS, MS, DICOI

THE SITUATION

A 60-year-old-heathy Caucasian female presented with the chief complaint: “I noticed a bump on my lower left teeth since last year.” An examination revealed a stable periodontium except for enlarged gingival tissue between #21-22 measuring 10x8x5mm, well-defined borders, depressible, non-painful, and vital teeth without displacement. The treatment plan included flap surgery, excisional biopsy, GTR #21-22 (Diff Dx: Lateral periodontal cyst (LPC), Odontogenic Keratocyst (OKC), Benign Fibro-Osseous lesion (BFOL).

Guided Tissue Regeneration (GTR) using Geistlich Bio-Oss® and vallos®f was performed and covered with a resorbable collagen membrane (Geistlich Bio-Gide®).

Primary closure was completed using non-resorbable sutures. Follow-up at 2, 4 weeks, 3, 6 months showed stable periodontium without re-occurrence. The pathology report indicated OKC and the area is monitored annually.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

The treatment goal was to excise the lesion around #21-22 and stabilize the periodontium. Sulcular incisions #20-22 with vertical incision #22 MF were performed. Upon full thickness flap reflection, the lesion was removed (excisional biopsy). The defect extended #21M-#22D with complete facial bone loss. It was a wide 1-2 bony wall defect measuring 10x8x5mm. GTR procedure using Geistlich Bio-Oss® and vallos®f and Geistlich Bio-Gide® for the collagen membrane were employed. Primary closure was obtained using 6-0 prolene suture.

Initial clinical and radiographic presentation shows buccal soft tissue enlargement and bone loss #21-22 area.
Clinical facial view showing full thickness flap reflection with complete enucleation of cystic lesion (excisional biopsy).
Clinical view showing hydration of vallos®f and Geistlich Bio-Oss® as two separate grafts.
Clinical facial view showing placement of vallos®f internally for maximum osteogenic/osteoinductive potential and Geistlich Bio-Oss® externally for space maintenance.
Clinical facial view showing placement of Geistlich Bio-Gide® covering the defect and extending one tooth mesillay and distally.
Clinical facial view showing primary closure using 6-0 prolene sutures.
CBCT immediately post-surgery showing radiolucent allograft internally for osseoinduction and radiopaque xenograft externally for space maintenance.
After flap elevation at 4 months showing, the new buccal bone plate together with a completely filled alveolus.
Clinical facial views showing healing at 2 and 4 weeks with proper soft tissue healing.
6 months post-surgery radiographic presentation showing stable periodontium and proper bone fill #21-22 area.
Comparison of pre- and post-surgical CBCT views showing good bone formation.
Comparison of pre- and post-surgical clinical views showing stable periodontium.

“Excisional biopsy and guided tissue regeneration is indicated to treat the pathology (#21-22 area) and stabilize the periodontium.”

— Dr. Bassam Kinaia

THE OUTCOME

Complete excision of pathology and biopsy followed by GTR using vallos®f internally for maximum osteogenic/osteoinductive potential and Geistlich BioOss® externally for space maintenance showed excellent radiographic bone fill and stable periodontium.

Six-month post-surgical clinical view shows stable periodontium.

Guided tissue regeneration using vallos®f bone graft (allograft as an internal first layer), Geistlich Bio-Oss® (as an outside second layer), and collagen membrane showed predictable periodontal regeneration.

Dr. Bassam Kinaia

Bassam Kinaia, DDS, MS, DICOI

Dr. Kinaia is the Associate Director of the Graduate Periodontology Program at the University of Detroit Mercy (UDM). He is also the former Director of the Periodontology Program at UDM in Michigan and Boston University Institute for Dental Research and Education in Dubai. He is a Diplomate of the American Academy of Periodontology (AAP) and International Congress of Oral Implantology (ICOI). He received a certificate of Excellence from the AAP in recognition of teaching-research fellowship.

BIOBRIEF

The Buccal Pedicle Flap for Peri-Implant Soft Tissue Volume

Dr. Giorgio Tabanella

THE SITUATION

Patient presented with a fistula buccal on tooth #9 associated with a chronic peri-apical lesion and external root resorption. Also tooth #8 showed a chronic peri-apical lesion. Her chief complaint was the misalignment of her teeth. The clinical situation revealed the presence of bleeding upon probing and generalized moderate periodontal disease (Stage II, Grade I) as well as multiple endodontic failures.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: request for reducing the healing time, long-term maintenance
watch video download pdf

THE APPROACH

The aim of the treatment is to eradicate periodontal disease and restore esthetics and function. Treatment planning: non-surgical and surgical periodontal treatment, orthodontic alignment, extraction of both central incisors, immediate implant placement and Guided Bone Regeneration with Geistlich Bio-Oss®, peri-implant soft tissue boosting with a buccal pedicle flap and full ceramic CAD-CAM restorations.

The clinical picture is showing a fistula buccal to #21 as well as leakage on old composite restorations. A thin biotype is evident.
The sagittal cuts are reporting chronic peri-apical lesions on both central incisors and a thin buccal plate with minor vertical bone loss but fenestration apical to #21.
The intrasurgical picture is showing the bony defect, the buccal fenestration and the thin buccal plate.
After allowing the tissue to heal for 4 months a first “Buccal Pedicle Flap” was performed during the uncovery of the dental implant. Simultaneously, Geistlich Fibro-Gide® was inserted into the envelope created by the flap design.
Geistlich Fibro-Gide® is reduced to a thickness of 4 mm at its borders so that it is easier to get adapted to the recipient site.
The Fibro-Gide® is trimmed so that its borders don’t approach the vertical incisions of the Buccal Pedicle Flap.
Polypropylene 6.0 sutures are used to compressed the Fibro-Gide® underneath the flap thus creating the “wrinkles” on the mucosa.
The wrinkles are visible also on the occlusal view. The mucogingival line is repositioned at its original level.
Four months after immediate implant placement and GBR in area #11 a second Buccal Pedicle Flap is performed to reduce the buccal concavity, boost the peri-implant mucosa and increase the thickness as well as the band of the keratinezed mucosa.
As in the previous surgery the Fibro-Gide® is inserted underneath the Buccal Pedicle Flap and stabilized with e-PTFE 6.0 sutures.
8 weeks post surgery, the occlusal view is showing a biomimetic countouring of the peri-implant mucosa.
The final esthetic result is emphasizing an excellent blending of “white” and “pink” esthetics.

“Orthodontic treatment must be postponed because of the presence of periodontal disease. A thin biotype and a high smile line needs to be taken into consideration.”

THE OUTCOME

The final outcome at 8 weeks is showing pink esthetics as well as biomimetics and function. The use of the buccal pedicle flap allowed the increased volume of the peri-implant mucosa with a minimally invasive approach. The combination of Geistlich Fibro-Gide® and a buccal pedicle flap had the main advantage of reducing the morbidity generally associated with CT harvesting.

The final esthetic result is emphasizing an excellent blending of “white” and “pink” esthetics.

Dr. Giorgio Tabanella

Dr. Tabanella is a Diplomate of the American Board of Periodontology, an Active Member of the Italian Academy of Esthetic Dentistry and author of the book “Retreatment of Failures in Dental Medicine”. He graduated from the University of Southern California, Los Angeles, USA where he obtained his Certificate in Periodontics as well as a Master of Science in Craniofacial Biology. He is Director of O.R.E.C. – Oral Reconstruction and Education Center (www.tabanellaorec.com), reviewer and author of original articles.

BIOBRIEF

Use of Geistlich Fibro-Gide® for Correction of Maxillary Anterior Soft Tissue Peri-implant Ridge Deficiencies

Dr. Israel Puterman

THE SITUATION

A 27-year-old female with congenitally missing maxillary lateral incisors was referred for implant placement. Following completion of orthodontics, a plan was developed to place dental implants at the #7 and #10 positions. Based on CBCT evaluation, alveolar ridge height and width was deemed sufficient for implant placement. Despite sufficient bone volume, facial ridge volume deficiencies were noted at both edentulous sites, requiring augmentation to allow for optimal esthetics.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

The goal of treatment was to replace missing maxillary lateral incisors with dental implants, while providing an esthetic result with predictable and minimally invasive techniques. Employing a surgical guide for implant placement, implants were placed in precise 3-dimentional positions. The use of xenograft biomaterials (Geistlich Fibro-Gide®) allowed for the augmentation of gingival biotype and elimination of the buccal ridge deficiencies while avoiding the harvesting of autogenous tissue.

Pre-surgical, occlusal view, demonstrating buccal ridge concavities at edentulous sites, #7 and #10.
Geistlich Fibro-Gide® collagen matrix is cut and shaped prior to placement into surgical sites.
Immediate post-surgical occlusal view following placement of implants and Geistlich Fibro-Gide® on facial aspects. Implant #7 was provisionalized immediately, however implant #10 did not achieve sufficient stability and a healing abutment was placed.
Immediate post-surgical facial view. One can note the buccal prominences being developed by the presence of Geistlich Fibro-Gide®.
2-month post-surgical view, following provisionalization of implant #10. Buccal convexities at the implant sites are still evident.
8 month view of implant sites at time of torque test, following maturation of gingival emergence. Of note is thick, convex buccal tissue free of any sign of inflammation.
Occlusal view following final restoration, (Dr. Paul Krainson). Natural-appearing buccal gingival convexities remain 1.5 years post-surgery.
Frontal view of final restoration of implants. The tissue health with stippling and root-like gingival prominences are noted.

“A buccal ridge deficiency with congenitally missing lateral incisors in a high-scallop, high-smile young female patient.”

THE OUTCOME

The presented case involves a female patient with congenitally missing maxillary lateral incisors and soft tissue ridge deficiencies. Implants were placed and a volume-stable collagen matrix Geistlich Fibro-Gide® was placed to provide labial soft tissue volume. The tissue emergence was then developed with the use of provisional restorations, one placed at the time of surgery, the other following implant integration. The implants were restored with gingival tissue transformed to mimic convex root emergence.

Correction of labial soft tissue ridge deficiencies at implant sites through use of a Geistlich Fibro-Gide® volume stable, collagen matrix.”

Dr. Israel Puterman

A volume-stable collagen matrix can be used to correct a labial soft tissue deficiency, eliminating the potential negative sequelae of an autogenous connective tissue graft.”

Dr. Israel Puterman

Various materials can be used to restore a soft tissue deficiency; use of a volume-stable collagen matrix provides numerous advantages when used in the proper indication.”

Dr. Israel Puterman

Dr. Israel Puterman

Dr. Puterman, originally from Montreal Canada, received his DMD from Boston University in 2002 and dual graduate certificates in Implant Dentistry and in Periodontics from Loma Linda University in 2008. He is a published author in various journals including the Journal of Prosthetic Dentistry and the Journal of Prosthodontics. He practices in the Washington, DC area.

BIOBRIEF

Phenotype Conversion Using Geistlich Fibro-Gide® for Immediate Implants in the Esthetic Zone

Dr. Robert A. Levine

THE SITUATION

A healthy non-smoking 50-year-old female patient who desires a single tooth solution to replace a non-restorable tooth, #12. A root fracture at the level of the palatal post was diagnosed in a root canaled tooth. Maintaining esthetics of the adjacent teeth is important as they are also restored with single full coverage porcelain crowns. Lastly, treatment time reduction and a minimally invasive surgical technique are desired by the patient for reduced downtime and post-operative morbidity.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Patients Esthetic Expectations: Realistic
Facial Bone Wall Phenotype: High Risk (<1mm)
Esthetic Risk Profile (ERP) = Medium (summary of above)
watch video download pdf

THE APPROACH

A minimally invasive surgical removal of tooth #12 with maintenance of the buccal plate and leaving a 3mm buccal gap. The implant will be placed one mm below the level of the intact buccal plate with an anatomically correct surgical guide template to provide for a screw-retained solution. The gap will be filled with Geistlich Bio-Oss Collagen® to maintain the bone buccal to the implant, and a palate free approach utilizing Geistlich Fibro-Gide® for soft tissue thickening to accomplish “phenotype conversion.” The long-term surgical goal is >2-3mm thickness of both hard and soft tissue buccal to the implant.

Pre-operative assessment demonstrates minimal zone and thickness of buccal keratinized gingiva, with a medium periodontal phenotype.
Pre-operative CBCT with virtually planned implant placement. A thin buccal plate (<1mm) is measured. Good apical bone is noted for the placement of a Straumann® 12mmx4.1mm bone level tapered implant.
Minimally invasive removal of #12 using only a buccal approach mini-flap showing an intact buccal plate with immediate placement of the implant (1 mm below the intact buccal wall) in a screw-retained position. A 3mm buccal gap is measured and a 1.5mm palatal gap.
Both the buccal and palatal gaps have been packed with Geistlich Bio-Oss Collagen® hydrated with Gem 21S. It’s my preference to squeeze Geistlich Fbro-Gide® between thumb and forefinger, prior to placement. A dry-carved piece of Geistlich Fibro-Gide® is in position thinned approximately 2mm with beveling laterally and coronally with a new #15 blade.
Geistlich Fibro-Gide® in place facial to the intact buccal wall under a full thickness buccal approach mini-flap. Immediate contour management was completed using an Anatotemp® for a maxillary bicuspid tooth.
Suturing completed using 4-0PTFE and 5 -0 polypropylene non-resorbable sutures. Anticipated short-term 25% post-operative swelling is discussed with the patient.
3 months post-operative appointment showing a well-developed subgingival transition zone created with immediate contour management. A reverse torque test was completed, and the case proceeded to completion.
9 month post-operative view with final screw-retained crown in place. Good interproximal papilla healing is noted with thickening of the buccal periodontal phenotype compared with Fig. #1. (Restorative Therapy: Drew Shulman DMD, MAGD; Philadelphia, PA)

“High esthetic demands were the primary concern with this case. They were addressed with the diagnostic tools of clinical photos, a site specific CBCT to evaluate the buccal wall status, and summing the findings with patient expectations gathered using the Esthetic Risk Assessment (knee-to-knee; eye-to-eye) which is used along with our consent agreement to treatment.”

THE OUTCOME

Minimally invasive surgery for buccal wall maintenance, virtually planning the buccal gap and implant width, using a xenograft in the buccal gap with phenotype conversion using a volume stable collagen matrix in conjuction with immediate contour management, allows for the best chance for papillae fill interproximally and maintenance of the mid-buccal gingival margin long-term.

Virtual planning the implant width for a screw-retained prosthesis based on an intact buccal wall after extraction to allow for a buccal gap of >2mm to be grafted are important keys for esthetic success.”

Dr. Robert A. Levine

The importance of the ‘one-two punch’ of ROUTINE phenotype-conversion using Geistlich Fibro-Gide® in conjunction with bone grafting the >2mm buccal gap with Geistlich Bio-Oss Collagen® provides excellent buccal convex tissue maintenance long-term.”

Dr. Robert A. Levine

Dr. Robert A. Levine

Robert A. Levine DDS is a board-certified periodontist at the Pennsylvania Center for Dental Implants and Periodontics in Philadelphia. He is a Fellow of the International Team for Dental Implantology (ITI), College of Physicians in Philadelphia, International Society of Periodontal Plastic Surgeons and the Academy of Osseointegration. He has post-graduate periodontology and implantology teaching appointments at Temple University in Philadelphia, UNC in Chapel Hill and UIC in Chicago and has over 80 scientific publications.

BIOBRIEF

Geistlich Mucograft® for the Treatment of Multiple Adjacent Recession Defects:  A More “Palatable” Option

Dr. Daniel Gober

THE SITUATION

A 35-year-old male presented in my practice with a chief complaint of recession. Multiple buccal recession defects ranging 2-5 mm were noted by teeth #11-14 with a minimal amount of keratinized tissue on the buccal of #14. Bone levels were within normal limits with no loss of interproximal tissue observed. These recession defects are classified as Miller Class I recession defects. Typically, 100% root coverage is expected for recession defects of this type.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune systemLight smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Bone defect(s)Not presentSlight defect <2mmSignificant >3mm
Keratinized tissueAdequate 5mmInadequate <5mmInadequate <3mm
Miller classificationClass I-IIClass IIIClass IV
watch video download pdf

THE APPROACH

My treatment goals included completing root coverage of the recession defects and augmentation of the width of attached keratinized tissue by tooth #14. My patient had similar recession defects on teeth #3-6 which were previously treated with an autogenous sub-epithelial connective tissue graft. Instead of autogenous tissue grafting, Geistlich Mucograft®, a xenogenic collagen matrix, was used in conjunction with a coronally advanced flap.

Pre-operative view of recession defects that ranges from 2-5 mm. There is minimal keratinized tissue on #14. Pocket depths are within limits with no loss of interproximal tissue.
A 15c blade is used to make sulcular incisions with scooping incisions at the level of the CEJ. A combination flap consisting of full-thickness coronally followed by a partial-thickness dissection apically is reflected.
The papillary tissue is de-epithelialized with a football diamond bur on a rotary hand piece. This exposes a vascular bed for the graft and intended coronal positioning of the flap.
Side-view of the recession defects. It is clearly visible how deep the recession defects are.
Geistlich Mucograft® is trimmed and positioned to extend beyond the root surfaces. A combination of simple interrupted sutures at its coronal edge and mattress sutures extending over the entire graft are used to adapt the graft to the recipient site.
The flap is then advanced and coronally positioned with horizontal mattress sutures to release tension and simple interrupted sutures to approximate the flap edges to the de-epithelialized papillas.
Follow-up after 1 week: note that the flap margins appear stable. Erythema and edema evident with maturation of the tissue beginning.
Follow-up after 3 months: maturation of the tissue evident with complete root coverage. An increase in the zone of keratinized tissue by #14 is also visible.
Follow-up after 1 year: stability of the graft is evident, complete coverage and a healthy and maintainable gingival situation have been achieved.

“The patient was unhappy with the post-operative morbidity he
experienced as a result of the previous connective tissue graft.”

THE OUTCOME

This case illustrates the successful use of Geistlich Mucograft®, a xenogenic collagen matrix, for the treatment of multiple adjacent recession defects. Complete root coverage and an increase in the zone of keratinized tissue was obtained and a dento-gingival complex that is amenable to long-term health and stability was achieved. My patient was spared from the inevitable morbidities associated with a sub-epithelial connective tissue graft from a palatal donor site.

Follow-up after 1 year

Geistlich Mucograft® is a viable alternative to an autogenous tissue graft for the treatment of recession defects.”

Dr. Daniel Gober

Having a thorough knowledge of wound healing can make all of the difference. Every step of the procedure must be planned with the goal of maximizing vascularization of the graft matrix.”

Dr. Daniel Gober

Due to its ability to smoothly and meticulously guide small suture needles through soft-tissue, the castroviejo needle holder is my instrument of choice when suturing during periodontal plastic procedures.”

Dr. Daniel Gober

Dr. Daniel Gober

Dr. Daniel D. Gober received his DDS from SUNY Stony Brook School of Dental Medicine in 2010. He completed his residency in periodontics and implantology at Nova Southeastern University. Dr. Gober is board certified by the American Academy of Periodontology and is a Diplomate of the International Congress of Oral Implantology. He is also certified in the administration of IV sedation and specializes in soft-tissue procedures around both natural teeth and implants. He currently practices in Cedarhurst, NY at South Island Periodontics & Implantology, PLLC.

BIOBRIEF

Soft-Tissue Augmentation in the Esthetic Zone

Prof. Dr. Daniel S. Thoma

THE SITUATION

A young male patient was referred to the clinic with a missing central incisor, #9 following trauma. An implant was placed and the patient was referred for an implant-born reconstruction. The patient does not smoke and drinks occasionally. Upon a clinical examination, extensive horizontal and vertical contour deficiencies are present prior to abutment connection.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: The fractured tooth has a periapical lesion together with a severe bone defect around the horizontal fracture.
watch video download pdf

THE APPROACH

The compromized situation with a horizontal and vertical hard and soft-tissue deficit required a soft-tissue volume grafting procedure. A buccal split-thickness flap was prepared and Geistlich Fibro-Gide® shaped and placed. Primary wound closure was obtained. Abutment connection was performed after 8 weeks and the emergence profile created with a provisional reconstruction. The final reconstruction was placed at 3 months.

A young male patient was referred to the clinic with a missing central incisor, #9 following trauma.
Preparation of a split-thickness flap (buccal pouch).
Due to releasing incisions within the periosteum, the tissues can be advanced more coronally.
The dimension and shape of Geistlich Fibro-Gide® with a maximal thickness (5mm) at the transition between the buccal and occlusal aspect.
Geistlich Fibro-Gide® inserted and immobilized with a horizontal cross-suture to the palatal flap.
Primary wound closure.
A provisional reconstruction is inserted; blanching of the tissues can be observed.
Final emergence profile established with a provisional reconstruction.
8 weeks healing: Abutment connection is performed
The clinical situation at 1-year follow-up.

“The patient presented with severe horizontal and vertical hard and soft-tissue defects. I needed a solution that could increase the soft-tissue anatomy around the implant and prosthesis.”

THE OUTCOME

The outcome of the case was very pleasing having fulfilled the patient’s expectations in terms of esthetics and function. The tissues are healthy and volume was obtained through the grafting procedure to match the contour of the neighboring natural tooth.

Soft-tissue augmentation using Geistlich Fibro-Gide® results in a predictable volume gain and reduces surgery time, as well as patient discomfort.”

Dr. Daniel S. Thoma

Prof. Dr. Daniel S. Thoma

Prof. Dr. Daniel Thoma is the head of Reconstructive dentistry and Vice-chairman at the Clinic for Fixed and Removable Prosthodontics and Dental Material Sciences, University of Zurich, Switzerland. He graduated in 2000 at the University of Basel, Switzerland and was trained in implant dentistry and prosthodontics at the clinic for Fixed and Removable Prosthodontics and dental Material Sciences, University of Zurich, Switzerland.

BIOBRIEF

Root Coverage for Multiple Adjacent Teeth in the Maxilla with Geistlich Fibro-Gide® 1.5-Year Follow-Up

Dr. Vinay Bhide

THE SITUATION

The patient is a healthy, 60-year-old female who presented to our clinic with a chief complaint of progressive gum recession which had led to compromised esthetics and sensitivity involving the maxillary left lateral incisor (#10), canine (#11), and first bicuspid (#12) teeth. The teeth in question had 3-4 mm of gingival recession on the buccal surface with a sufficient zone of keratinized gingiva. These teeth also had obvious cervical abrasion.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Classification of recession – RT1 i.e. intact interdental bone and soft tissues
Severity of recession – mild to moderate
Amount of keratinized gingiva – 2 mm or greater for all teeth involved
watch video download pdf

THE APPROACH

Treatment goals for this case were to obtain complete root coverage, increase soft tissue thickness, and reduce/eliminate cervical sensitivity. A split-thickness envelope flap approach was used. Geistlich Fibro-Gide® was then trimmed, hydrated with saline, and placed over the exposed root surfaces. The flap was coronally advanced in a tension-free manner to completely cover the biomaterial and exposed root surfaces.

Pre-operative condition: Note that the gingival recession of 3-4 mm is evident as is the cervical root abrasions. The interdental papillae completely fills the embrasure space.
Incision design showing the sulcular incisions with horizontal incisions across the interdental regions ending with a remote oblique vertical releasing incision distal to the first bicuspid tooth.
The interdental papillae were de-epithelialized and Geistlich Fibro-Gide®was placed over the exposed roots extending onto the bone. Geistlich Fibro-Gide® was not secured with sutures.
Internal periosteal releasing incision was made to allow tension-free coronal advancement of the buccal flap to completely cover Geistlich Fibro-Gide®.The flap was secured with 5-0 Monocryl® sutures.
1-week post-operative visit: the healing looks good and sutures are intact. There was a small soft-tissue dehiscence at the buccal margin of the canine tooth.
Healing progressed well at 2 months post-operatively and the dehiscence defect seen at 1 week appears to be healing. Soft-tissue thickness is also evident at this stage.
At 6 months, 100% root coverage has been achieved. Note the increase in keratinized gingiva at the canine tooth where there was previously delayed healing. The patient is happy with the esthetic and functional outcome.
At 1 year, we can see root coverage has been sustained. Complete root coverage is not seen for the upper left bicuspid, not surprising given the tooth had an older restoration which was removed prior to grafting and the CEJ on the proximal surface is visible. Partial coverage was achieved however and is much more pleasing to the patient.
At 1.5 years, the tissue looks stable, healthy and esthetic. The patient is very happy with results thus far both from esthetic and functional standpoints. She is still free of sensitivity.

“The patient’s main priorities were to improve esthetics and reduce/eliminate root sensitivity. Soft tissue grafting was done with autologous connective tissue in other areas of her mouth many years ago and she was hesitant to undergo surgery again if it involved harvesting tissue from her palate due to the post-operative pain she experienced after these previous procedures.”

THE OUTCOME

This case nicely shows that the result following root coverage surgery to treat multiple adjacent teeth using a volume-stable collagen matrix is comparable to that seen with autologous connective tissue. At 1.5 years, there is continued stability of the treated site. The tissue appears healthy and firm. The patient‘s chief complaints of esthetics and sensitivity have been addressed and the patient is maintaining excellent oral hygiene and home care.

Multiple recessions on adjacent teeth in the maxilla can be treated successfully with a volume-stable collagen matrix and coronally-advanced flap.”

Dr. Vinay Bhide

The most important material for this case is the use of a volume-stable collagen matrix used in place of autologous connective tissue. Using this material has significantly decreased patient morbidity.”

Dr. Vinay Bhide

Dr. Vinay Bhide

Dr. Vinay Bhide is a board certified Periodontist with a special interest in periodontal plastics and reconstructive surgical procedures. Dr. Bhide did his dental and specialty training at the university of Toronto. In addition to private practice, Dr. Bhide is a clinical instructor in the Department of Periodontics at the university of Toronto. He is also a staff periodontist in the Center for Advanced Dental Care and Research at Mount Sinai Hospital, Toronto.

BIOBRIEF

Ridge Augmentation and Delayed Implant Placement on an Upper Lateral Incisor

Dr. Daniele Cardaropoli

THE SITUATION

An adult female patient presented with an endodontic/prosthetic failure on the maxillary left lateral incisor. The patient‘s request was to have a definitive implant-supported single crown. The clinical situation revealed recession of the free gingival margin, while the CBCT evaluation showed the missing buccal bone plate, which contra-indicated an immediate implant placement. The treatment plan included a staged approach with a ridge augmentation procedure at the time of tooth extraction, in order to recreate the buccal bone plate and reduce the gingival recession. By moving the free gingival margin, keratinized tissue was gained through an open-healing approach.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: The compromised soft-tissue created a high risk situation for esthetic failure and the need for a staged approach, in order to coronalize the free gingival margin.
watch video download pdf

THE APPROACH

The treatment goals were to improve the soft-tissue levels and regenerate the buccal bone plate. After performing a flapless extraction procedure, a specifically designed resorbable bilayer collagen membrane, Geistlich Bio-Gide® Shape, was inserted into the socket with the long wing in contact with the buccal surface and the smooth, compact upper layer facing outward. The alveolus was then grafted with Geistlich Bio-Oss Collagen®. The three smaller wings of the membrane were folded on top of the graft material and sutured to the surrounding soft-tissue, allowing for open-healing.

Baseline: endodontic/prosthetic failure on the maxillary left lateral incisor.
The cone beam image shows the missing bony buccal plate.
Clinical situation following a minimally invasive, flapless extraction approach.
Geistlich Bio-Gide® Shape is inserted into the socket, with the long wing in contact with the buccal surface in order to recreate the cortical bone.
The socket is carefully grafted with Geistlich Bio-Oss Collagen®.
The three remaining wings of Geistlich Bio-Gide® Shape are folded over the bone graft and gently secured inside the gingival sulcus. The membrane is then sutured to the surrounding soft-tissue with six single-interrupted sutures.
Implant placement can be planned 4 months after the ridge augmentation procedure.
4 weeks post-operative view with an open-healing approach, showing a positive soft-tissue response.
After flap elevation at 4 months, the new buccal bone plate can be detected, together with a completely filled alveolus. An implant can now be easily inserted into a fully healed ridge.
Clinical image of the final ceramic crown. An esthetic improvement can be noted when compared with the baseline image. The free gingival margin has been shifted in a coronal direction.

“The patient had a failing crown with compromised soft tissue and requested a single crown rehabilitation with improved esthetics.”

THE OUTCOME

This case demonstrates how it is possible to improve the clinical and esthetic situation that was presented at baseline. Despite missing the buccal bone plate and the recession of the free gingival margin, the ridge augmentation procedure performed with the combination of Geistlich Bio-Gide® Shape and Geistlich Bio-Oss Collagen® was able to create a positive volume of the ridge, allowing for a prosthetically guided implant placement.

Clinical image of the final ceramic crown

Ridge augmentation combining the use of Geistlich Bio-Oss Collagen® and Geistlich Bio-Gide® Shape is a predictable minimally invasive regenerative procedure able to create sufficient ridge volume suitable for prosthetically driven implant placement.”

Dr. Daniele Cardaropoli

Prosthetically guided implant placement can be planned 4 months after the ridge augmentation procedure. The specifically designed Geistlich Bio-Gide® Shape was able to protect the Geistlich Bio-Oss Collagen®, not only in the coronal position but also aided in recreating the missing buccal bone.”

Dr. Daniele Cardaropoli

The use of the Cardaropoli Compactor instrument helped to carefully adapt Geistlich Bio-Gide® Shape onto the inner buccal surface of the alveolus and to properly compact Geistlich Bio-Oss Collagen® inside the socket.”

Dr. Daniele Cardaropoli

Dr. Daniele Cardaropoli

Periodontist – PRoED, Institute for Professional Education in Dentistry, Torino

Doctor of Dentistry and Certificate in Periodontology from the University of Torino, Italy.
Active member of the Italian Society of Periodontology, European Federation of Periodontology, Italian Academy of osseointegration and Academy of osseointegration. International member of the American Academy of Periodontology. Scientific Director of Institute for Professional Education in Dentistry (PRoED), Torino. Member of the Editorial Board of The International Journal of Periodontics and Restorative Dentistry. Private practice in Torino, Italy.

BIOBRIEF

Avoiding Post-Implant Placement and Long Term Crestal Bone Resorption by Thickening Vertical Soft Tissue

Tamir Wardany, D.D.S.

THE SITUATION

Our patient is a 60-year-old caucasian male that had just finished a large ridge augmentation in the area of #4 and #5. We used the sausage technique for the ridge augmentation and yielded excellent bone volume in this area. However, as we began the 2nd stage implant placement procedure, we noticed, as is frequently seen following a large ridge augmentation, very thin vertical soft tissue over the crest of the bone. We know that inadequate soft tissue thickness will lead to compromised vasculature and transfer of oxygen and nutrients to the bone which can absolutely lead to a loss of crestal bone surrounding the implants.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Note: Bone was augmented prior to this case report due to a severe horizontal defect.
watch video download pdf

THE APPROACH

Our goal here is to create increased vertical soft tissue thickness over the crest of the implant site. Following implant placement and placement of the cover screws, we used Geistlich Fibro-Gide® over the implants and then layed it over the crest and buccal aspect. Following the placement of Geistlich Fibro-Gide®, we gently released the full thickness flap so that we can achieve tension-free primary closure over the site.

6 months following horizontal ridge augmentation, using Dr. Urban’s sausage technique, we re-entered the site for implant placement using a full thickness flap with no vertical incisions, to not disrupt collateral blood supply. There is excellent bone volume, but a very thin vertical soft tissue volume over the crest of the implant site.
Straumann implants are placed in sites #4 and #5 to a 25Ncm torque value with no issues and the cover screws were placed.
Geistlich Fibro-Gide® is placed crestally over the implants and draped to the buccal and slightly towards the lingual. Geistlich Fibro-Gide® was trimmed slightly to minimize the thickness of the material.
The flap was released so that we can achieve tension-free primary closure over the implant and the Geistlich Fibro-Gide® soft tissue augmentation site.
Following an 8 week healing period, we make a crestal incision and lay a conservative full-thickness flap to uncover the implants. We observe a 3-4 mm increase in verticle soft tissue thickness over the implant site.
We allow 3 weeks following the initial uncovering and can now see beautiful soft tissue architecture surrounding the implants.
Prior to the restorative process we see the pre-restorative radiograph with the healing abutments in place and we can also observe excellent crestal bone levels around the implants.
1 year follow-up. The restorative dentist opted to splint the crowns together. The patient did not want implants posterior to this area and he did not want any sinus augmentation as he had a history of sinus issues.

The use of Geistlich Fibro-Gide® is a wonderful alternative to using a connective tissue graft to thicken vertical soft tissue, which will help minimize crestal bone loss around implants.

THE OUTCOME

The soft tissue that will now surround the implant site is thick and healthy due to the use of Geistlich Fibro-Gide® at the time of implant placement. This is a simple technique and only requires a minimal amount of flap release to achieve tension-free primary closure over the site. The results are phenomenal and will be beneficial for the stability of the crestal bone surrounding the implants for years to come.

1-year follow-up. The restorative dentist opted to splint the crowns together. The patient did not want implants posterior to this area, and he did not want any sinus augmentation as he had a history of sinus issues.

Thin vertical soft tissue over the implant site following ridge augmentation is one of the key factors which may lead to crestal bone loss around the implants that will be placed.

Tamir Wardany, D.D.S.

I find the Mini-Me Periosteal to be my most versatile instrument for all my hard and soft tissue cases. I always have this instrument out on my surgical tray.

Tamir Wardany, D.D.S.

Beginning with thin soft tissue, we were able to achieve very thick and healthy vertical soft tissue over the implants, which will improve blood flow to the bone and minimize crestal bone loss in future.

Tamir Wardany, D.D.S.

Tamir Wardany, D.D.S.

Dr. Wardany is a graduate of Meharry Medical College School of Dentistry in Nashville, TN. After completion of a dental implant fellowship through State University of New York Stonybrook, he continues to spend extensive time in Europe training under Dr. Istvan Urban in the field of advanced bone and soft tissue regeneration.

He is a Diplomate of the American Board of Implantology, and lectures extensively on the topic of bone regeneration. He maintains a referral based surgical implant practice in San Francisco and Sacramento, California.

BIOBRIEF

A Regenerative Approach to Peri-implantitis

Hector L. Sarmiento, D.M.D., MSc.

THE SITUATION

A 55-year-old man was referred to me by his general dentist. Upon initial clinical and radiographic findings, failing implant #9 showed signs of peri-implantitis that included BoP, Suppuration, 9+mm PD and radiographic bone loss affecting both the implant and the natural adjacent tooth. Patient stated that although his gums bleed, he does not have any pain. Gingival erythema was also found.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Note: Peri-implantitis on implant #9 migrating to the mesial portion of root #8
watch video download pdf

THE APPROACH

The clinical goals were to eliminate the peri-implant infection, restore hard and soft-tissues and have long-term success. The technique utilized was a systematic regenerative approach to eliminate the underlying cause of the peri-implantitis infection and restore hard and soft-tissues to prior health.

Initial situation, patient presented with radiographic and clinically traditional signs of peri-implantitis, including bleeding on probing, suppuration, radiographic progressive bone loss and clinical pathologic probing depths.
Mechanical debridement was achieved using titanium scalers, an ultrasonic device with an implant protective cap and titanium brushes to remove all of the visible contaminants of the implant surface. Citric acid was then placed on shreds of a non-woven gauze and applied to the surface for approx. 1min. Copious irrigation was done using saline solution and the surface was ablated using the Er:YAG laser at 20pps/50mj.
After the surface was prepped and no signs of residual granulation tissue was noted, the defect was grafted with Geistlich Bio-Oss®. Attention was given towards not augmenting beyond the bony envelope.
A protective Geistlich Bio-Gide® membrane was placed over Geistlich Bio-Oss®.
Geistlich Fibro-Gide® was placed over Geistlich Bio-Gide® to enhance soft-tissue volume and quality. Geistlich Fibro-Gide® was trimmed and adapted to the defect site ensuring a tension free closure.
Geistlich Fibro-Gide® was place on the top of the bone graft to enhance soft-tissue thickness. Geistlich Fibro-Gide® is porous. We can observe the rapid penetration of blood through the matrix.
Closure with a tension-free flap was achieved by releasing incisions and secured using 4-0 chromic gut sutures.
1.5 year post-operative photo and radiograph show the healing of the soft-tissues with no signs of peri-implantitis and adequate tissue thickening. Radiographic bone levels have maintained stable over the course of the year.

Geistlich Fibro-Gide® has the capacity to enhance the soft-tissue during a bone regenerative approach.

THE OUTCOME

My observation at the 1.5 year follow-up shows the elimination of peri-implantitis and complete peri-implant health was achieved showing a reduction in BOP, PD and most importantly soft tissue thickness stability. Radiographically, crestal bone shows no signs of progressive pathological loss and has maintained adequate volume.

Geistlich Fibro-Gide® was utilized to enhance the soft-tissues during a regenerative peri-implantitis approach. In my opinion, healthy, thick soft-tissue is easier for a patient to maintain and creates a better environment for long-term survival.

Hector L. Sarmiento, D.M.D., MSc.

Hector L. Sarmiento, D.M.D., MSc.

Dr. Hector Sarmiento was awarded his D.M.D. degree by the University of Rochester. He is uniquely trained in both maxillofacial surgery and periodontics. He is a professor in the maxillofacial surgery department of trauma and reconstructive unit at the Regional Hospital in Mexico and is an Assistant Clinical Professor in periodontics at the University of Pennsylvania. Along with his periodontal degree, he also received his masters in oral biology from the University of Pennsylvania. Dr. Sarmiento is an international and national lecturer and has published numerous articles in peer reviewed journals and textbooks. His research focus includes infected dental implants such as peri-implantitis, sinus complications as well as bone biology. Dr. Sarmiento maintains his private practice in the upper east side of Manhattan in NYC.

BIOBRIEF

3D Bone Augmentation Using Customized Titanium Mesh in Conjunction with Autogenous Bone and Bovine Bone Material Granules

Dr. Matteo Chiapasco
Matteo Chiapasco, D.D.S., M.D.
Grazia Tommasato, D.D.S., M.S.C.

THE SITUATION

A 75-year-old systemically healthy female came to our attention presenting with absent mandibular second bicuspids and molars and requiring a fixed rehabilitation supported by implants as she refused a removable solution. The clinical and radiographic evaluation showed a relevant vertical and horizontal bone atrophy of such an extent that short or narrow implants were not considered a reliable option. The patient smoked <10 cigarettes per day.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: Yxoss CBR® by ReOss® Screws 5mm – MCbio (G-fix system)
watch video download pdf

THE APPROACH

The main goal was to obtain a horizontal and vertical reconstruction of the deficient alveolar bone in order to allow safe and prosthetically-guided implant placement. Reconstruction was obtained by means of a customized titanium mesh, Yxoss CBR®, in combination with a mixture of autologous bone chips harvested from the mandibular ramus and bovine bone mineral, Geistlich Bio-Oss®.

Panoramic radiograph of initial situation showing the atrophic mandibular areas.
The final Yxoss CBR® ready for use.
The customized Ti-mesh is filled with the autologous bone chips mixed with Geistlich Bio-Oss® granules in a 50:50 ratio.
Intra-operative view at the end of the reconstruction showing the bone augmentation: the customized mesh was stabilized with 2 fixation screws.
A Geistlich Bio-Gide® membrane is used to cover the customized mesh in order to increase the barrier effect.
Intra-operative view after primary closure of the surgical wound.
Panoramic radiograph after surgery.
Clinical control 3 months later showing favorable healing of the soft tissue and correction of the defect.


The 3-dimensional reproduction of the left edentulous area permits the production of a precise and customized Ti-mesh.

THE OUTCOME

Post-operative recovery of this patient was uneventful, no complications such as dehiscence or late exposure of the customized mesh, with complete correction of the initial defect. The Yxoss CBR® allowed an easy and faster reconstruction thanks to the precision of the prefabricated mesh filled with autologous chips, Geistlich Bio-Oss® and Geistlich Bio-Gide®.

While it is important to be an expert in guided bone regeneration, this technique reduces the difficulties to less than one-half and is predictable, effective, and precise.

Matteo Chiapasco, D.D.S., M.D.

GBR combining the use of Geistlich Bio-Oss®, autologous bone chips taken from the mandibular ramus associated with a customized Yxoss CBR®, covered with a Geistlich Bio-Gide®, is a predictable regenerative procedure allowing for the creation of an adequate volume suitable for a prosthetically-guided implant placement with optimization of the final restoration.

Matteo Chiapasco, D.D.S., M.D.
Dr. Matteo Chiapasco

Matteo Chiapasco, D.D.S., M.D.

Graduated in Medicine and specialized in Maxillofacial Surgery at the University of Milan, Italy. Professor, Unit of Oral Surgery, University of Milan; Associate Professor, Loma Linda University, Los Angeles, California, USA.

Grazia Tommasato, D.D.S., M.S.C.

Graduated in Dentistry in 2013, specialized in Oral Surgery at the University of Milan magna cum laude. PhD student and a medical consultant of the Clinical Unit of Oral Surgery (“G. Vogel” Clinic, Milan).

BIOBRIEF

Enhance Periodontal Phenotype with Geistlich Mucograft® for Soft Tissue Augmentation 

Allison Rascon, D.D.S., M.S.

THE SITUATION

A healthy, non-smoking, 37- year-old female presented for second stage surgery at implant sites #23 and #26. Limited keratinized tissue width and gingival thickness can be appreciated in the edentulous ridge, and the patient can be classified as having a thin periodontal phenotype. Additionally, the patient states she experiences sensitivity, and the tissue feels “tender” when brushing. The patient hopes to address her needs in a minimally invasive manner. 

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system 
Non-smoker
Light smokerImpaired immune system 
Heavy smoker
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: The patient‘s keratinized tissue is inadequate (<2 mm) and the recession on the canines can be classified as RT 1 defects. 
watch video download pdf

THE APPROACH

The aim of treatment was to enhance the existing periodontal phenotype from that of one which is thin, with limited keratinized tissue, to one that is thick and maintains an adequate band of attached keratinized tissue. Geistlich Mucograft® was used in conjunction with a PRF membrane, in order to provide optimal wound healing, due to its chemotactic and angiogenic properties. 

A mid-facial incision was made, with the intent to preserve the minimal keratinized tissue that was available, as well as vertical incisions along the line angles of the canines to reflect a partial thickness flap.
Platelet-rich fibrin clots were formed by centrifugation. The leukocyte-PRF (L-PRF) was extracted, and the L-PRF was used to hydrate Geistlich Mucograft®
Geistlich Mucograft® and PRF stabilized via glycolon sutures.
Clinical situation at three-week follow-up.
Occlusal view at twelve-month follow-up.
Frontal view at twelve-month follow-up.

A viable option that allows for reduced patient morbidity, adequate functional necessity, and ideal esthetics.

THE OUTCOME

Dual application of platelet-rich fibrin (PRF) and a xenogenic collagen matrix, Geistlich Mucograft®, led to successful augmentation of the edentulous ridge. At one-year, the tissues appear healthy, and an increased keratinized tissue width and gingival thickness can be appreciated. By using this soft tissue alternative, the patient was able to avoid post-operative morbidity from a second surgical site, and the chief complaint was addressed. 

Final restoration: 12-month healing

Soft tissue procedures are technique sensitive and success requires appropriate graft size and thickness, recipient bed preparation, and adequate stabilization. Having a xenograft matrix provides control over having the necessary graft dimensions, without requiring a second surgical site, and it’s easy-handling properties ensure placement and stability are done in a predictable manner.” 

Allison Rascon, D.D.S, M.S

With adequate recipient bed preparation, the ease of manipulation with the hydrated xenograft matrix allowed for intimate adaptation, and the overlaying PRF was easily compressed against Geistlich Mucograft®. At twelve months follow up, stable soft tissue dimensions are observed with adequate thickness, as well as esthetically appropriate blend of the tissue color and texture.”  

Allison Rascon, D.D.S, M.S

Allison Rascon, D.D.S., M.S.

Dr. Allison Rascon was born and raised in Miami, Florida. She received her Bachelor of Science in Biomedical and Health Sciences from the University of Central Florida. She received her DDS from New York University, where she graduated with honors in Periodontics and was inducted into the Omicron Kappa Upsilon National Dental Honor Society in 2020. She then went on to receive a Certificate in Periodontics and Master of Science in Oral Biology from the University of Pennsylvania. Currently, she is board-eligible by the American Academy of Periodontology. She is an active member of the AAP, AO, OF, and ADA. Aside from her active participation in organized dentistry, she is also passionate about her research in periodontal and peri-implant regeneration. Dr. Rascon was a recipient of the George J. Coslet Memorial Scholarship in 2021 and 2022. During her residency, she was awarded the Best Oral Clinical Presentation Award at the Academy of Osseointegration Annual Meeting in 2022 and was the recipient of the Northeastern Society of Periodontists Tannenbaum/ Schoor Resident School Competition Award for 2023. Currently, Dr. Rascon works in private practice in Manhattan, NY.

BIOBRIEF

Clinical Efficacy of Geistlich Mucograft® in Regeneration of Oral Mucosa Combined with the Surgical Treatment of Peri-implantitis in Implants with Lack of Keratinized Tissue

Dr. Alberto Ortiz-Vigón
Dr. Erik Regidor Correa

THE SITUATION

Adult patient, non-smoker and without relevant systemic history, attends to clinic referring peri-implant tissue inflammation, bleeding and brushing discomfort around her implant in the upper jaw. Clinically peri-implant pocket depth > 5 mm, bleeding and suppuration on probing were observed. Furthermore, the implant presented < 2 mm of keratinized mucosa and radiographic horizontal bone loss.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system 
Non-smoker
Light smokerImpaired immune system 
Heavy smoker
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Intrasulcular incision was made and a mucosal partial thickness flap was raised. The recipient site was prepared by sharp disection in order to create a periosteal bed free of any muscle attachment. Peri-implant granulation tissue was removed and implantoplasty was performed. Finally, Geistlich Mucograft® was used to support the gain of keratinized tissue. Thus, the collagen matrix was sutured with the resulting flap apically at the base of the newly created vestibulum.

Pathological peri-implant pocket depth combined with bleeding on probing.
Partial thickness flap in order to create a periosteal bed free of any muscle attachment and apically positioned.
Implantoplasty of the exposed rough implant surface using burs and silicon carbide polishers.
Xenogeneic collagen matrix structure (Geistlich Mucograft®).
Future position of the xenogeneic collagen matrix facilitated by prosthodontic abutment.
Suture of xenogeneic collagen matrix around the abutment and over the recipient bed.
Buccal view of xenogeneic collagen matrix and apically positioned flap.
Occlusal view of xenogeneic collagen matrix and apically positioned flap.
Lateral view of xenogeneic collagen matrix and apically positioned flap.
Peri-implant tissue health and maintenance of keratinized tissue after one year of surgical treatment.
Periimplant tissue health and maintenance of keratinized tissue after 2 years

Absence of > 2 mm of keratinized mucosa was associated with peri-implant soft-tissue inflammation, bleeding and discomfort on brushing.

THE OUTCOME

After two years follow-up, the successful outcome can be observed in terms of clinical peri-implant parameters, gain of keratinized mucosa without significant graft shrinkage and stability of vertical position of the mucosal margin.

The use of Geistlich Mucograft® xenogeneic collagen matrix for regeneration of oral mucosa, combined with the surgical respective approach to peri-implantitis provides an improvement in clinical parameters and increase of the peri-implant keratinized mucosa minimizing the risk of recession in the esthetic area.”

Dr. Erik Regidor Correa & Dr. Alberto Ortiz-Vigón

The use of soft-tissue substitutes may play an important role in patient perception and satisfaction without jeopardizing the final clinical outcome.”

Dr. Erik Regidor Correa & Dr. Alberto Ortiz-Vigón

Dr. Alberto Ortiz-Vigón

  • DDS from the University of the Basque Country
  • MSc and PhD in bone regeneration from the University Complutense of Madrid (UCM)
  • Master in Periodontology and Implant dentistry from the EFP
  • Research fellowship at the University of Gothenburg
  • MBA from the Deusto Business School
  • Assistant professor and clinical researcher at UCM and ThinkingPerio Research
  • PerioCentrum Clinic in Bilbao
  • Co-founder of ARC Healthtech Innovation Holding
  • Socially engaged & NGO co-founder of Smile is a Foundation

Dr. Erik Regidor Correa

  • DDS from the University of the Basque Country
  • MSc from the U. of the Basque Country
  • Master in Periodontology and Implant Dentistry U. of the Basque Country
  • PhD student in the U. of the Basque Country
  • Assistant professor and clinical researcher ThinkingPerio Research

WEBINAR

WEBINAR

WEBINAR

WEBINAR

WEBINAR

WEBINAR

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE