BIOBRIEF

Combined Horizontal and Vertical Regeneration using a CAD-CAM Titanium Scaffold

Dr. Gian Maria Ragucci
Prof. Federico Hernández-Alfaro

THE SITUATION

A 54-year-old, systematically healthy male patient (*ASA) came to our attention presenting with partial edentulism in the lower jaw and requiring a fixed and esthetic rehabilitation, refusing any removable solution. The clinical and radiographic evaluation resulted in significant bone atrophy both in the vertical and horizontal components; which makes it impossible to place both conventional implants and short or narrow implants.

*American Society of Anesthesiologists Physical Status Classification System

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Solving the case was developed in two steps: first bone reconstruction to restore the ideal anatomy, second positioning of the prosthetically guided implants. An individualized regeneration technique was chosen using a CAD-CAM titanium scaffold (Yxoss CBR®) in conjunction with a mix of 60% autogenous bone and 40% Geistlich Bio-Oss®, covered by Geistlich Bio-Gide®. At 9 months, the titanium scaffold was easily removed and 3 prosthetically guided implants were placed, completely surrounded by bone. At 12 months, a free gingival graft was performed to re-establish the missing amount of keratinized mucosa. Finally, at 16 months, the final rehabilitation was carried out with a fixed prosthesis on implants.

Panoramic radiographic view of the defect
Horizontal and vertical augmentation step by step
Baseline situation (left) and 9-month follow-up (right)
Scaffold removal and implant placement step by step
Soft-tissue management with free gingival graft
Final restoration
Periapical radiographs of implants and prosthesis
Final restoration at 16 months

“Combined horizontal and vertical bone augmentation utilizing a CAD CAM titanium scaffold can be achieved with less surgical time and less complications.”

THE OUTCOME

The final resolution of the case was very satisfactory. There were no complications during all the procedures performed. The Yxoss CBR® allowed for easier reconstructive surgery and a significant reduction in surgical times, thanks to the precise dimensions of the scaffold. This resulted in a favorable post- operative situation for the patient and complications were prevented.

Final restoration at 16 months

Vertical bone reconstruction combining the use of Yxoss CBR®, Geistlich Bio-Oss® and Geistlich Bio-Gide® allows a predictable regenerative procedure that is able to create sufficient bone volume suitable for prosthetically guided implant placement.”

Dr. Gian Maria Ragucci

The use of CAD-CAM Titanium scaffold Yxoss CBR® allows an ideal bone regeneration and a faster and easier surgery.”

Dr. Gian Maria Ragucci

Dr. Gian Maria Ragucci

Universitat Internacional de Catalunya (UIC), Barcelona Dental degree at Universidad Europea de Madrid 2015
International Master in oral surgery at UIC, Barcelona 2018
PhD student at UIC, Barcelona 2018
EAO Certification program in implant dentistry 2018
EAO European prize in implant dentistry 2019

Prof. Federico Hernández-Alfaro

Full professor & Chairman, Department of Oral and Maxillofacial Surgery, UIC, Barcelona
Institute of Maxillofacial Surgery, Teknon Medical Center, Barcelona

BIOBRIEF

Prosthetically Guided Regeneration (PGR) in the Posterior Maxilla

Paolo Casentini, DDS

THE SITUATION

The 60-year-old female patient’s chief complaint was represented by unsatisfactory esthetics and function, related to loss of multiple maxillary teeth. Her request focused on improving esthetics and function by means of a fixed reconstruction.

The patient presented five residual anterior maxillary teeth (from 6 to 10) that could be maintained. After preliminary periodontal diagnosis and treatment, specific diagnostic steps for implant treatment demonstrated inadequate bone volume for implant placement.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video

THE APPROACH

Bi-lateral sinus lift with Geistlich Bio-Oss Pen® and horizontal bone augmentation with a 1:1 mix of autogenous bone and Geistlich Bio-Oss® were performed six months prior to implant placement, following a Prosthetically Guided Regenerative (PGR) approach. The augmented sites were protected with Geistlich Bio-Gide® stabilized with titanium pins. The template utilized for radiographic diagnosis and GBR was then used to guide the implants’ placement.

Baseline full-mouth intra-oral view: the residual maxillary teeth were preliminarily reconstructed with a composite mock-up. The horizontal atrophy of the posterior areas of the maxilla is clearly visible.
The cone beam, realized with a radio-opaque diagnostic template, shows inadequate bone volume for implant placement in all the analyzed sites.
The use of the diagnostic template during the augmentation procedure helps to highlight the presence of bone defects in relationship to the restorative plan and future position of implants.
Large Geistlich Bio-Oss® particles are directly applied inside the sinus with Geistlich Bio-Oss Pen®.
The Geistlich Bio-Gide®, fixed with titanium pins is used to protect and stabilize the augmented site. As the surgical template shows, the bone augmentation is based on the future restorative project following the principle of PGR.
The same surgical procedure is performed on the left posterior side of the maxilla.
Cone-beam 6 months after surgery and prior to implant placement. The relationship between the template used for diagnosis and the bone crest reveals adequate bone volume to place implants in the correct prosthetically driven position.
Implant placement was guided by the same template utilized for diagnosis and bone augmentation.
Final view of the prosthetic reconstruction demonstrates bio-mimetic integration of implant-supported prostheses and ceramic veneers bonded to residual natural teeth.
The panoramic radiograph shows adequate integration of the implants and absence of peri-implant bone resorption.

Using a diagnostic template during the GBR procedure helps to highlight the presence of bone defects in relationship to the restorative plan and future position of implants.

THE OUTCOME

After a healing period of six months, adequate bone volume was achieved for the placement of five implants. Geistlich Fibro-Gide® was also used to optimize soft tissue volume at the buccal aspect of implants.

Implants were early loaded with a temporary screw-retained fixed prostheses six weeks after placement. The final prosthetic reconstruction included ceramic veneers of the frontal residual teeth and zirconium-ceramic screw-retained fixed prostheses on implants.

Patient satisfaction is my driver for excellence. That’s why I always apply the Prosthetically Guided Regeneration principle together with Geistlich Biomaterials: proven and predictable long-term patient success.

Paolo Casentini, DDS

Paolo Casentini, DDS

Graduated in Dentistry at the University of Milan, Fellow and Past Chairman of the Italian section of ITI, Active member Italian Academy of Osseointegration. Co-author of 10 textbooks including ITI Treatment Guide volume 4, translated in eight languages, and “Pink Esthetic and Soft Tissues in Implant Dentistry” translated in five languages. His field of interest is advanced implantology in complex and esthetically demanding cases. He has extensively lectured in more than 40 countries.

BIOBRIEF

A Regenerative Approach to Peri-implantitis

Hector L. Sarmiento, D.M.D., MSc.

THE SITUATION

A 55-year-old man was referred to me by his general dentist. Upon initial clinical and radiographic findings, failing implant #9 showed signs of peri-implantitis that included BoP, Suppuration, 9+mm PD and radiographic bone loss affecting both the implant and the natural adjacent tooth. Patient stated that although his gums bleed, he does not have any pain. Gingival erythema was also found.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Note: Peri-implantitis on implant #9 migrating to the mesial portion of root #8
watch video download pdf

THE APPROACH

The clinical goals were to eliminate the peri-implant infection, restore hard and soft-tissues and have long-term success. The technique utilized was a systematic regenerative approach to eliminate the underlying cause of the peri-implantitis infection and restore hard and soft-tissues to prior health.

Initial situation, patient presented with radiographic and clinically traditional signs of peri-implantitis, including bleeding on probing, suppuration, radiographic progressive bone loss and clinical pathologic probing depths.
Mechanical debridement was achieved using titanium scalers, an ultrasonic device with an implant protective cap and titanium brushes to remove all of the visible contaminants of the implant surface. Citric acid was then placed on shreds of a non-woven gauze and applied to the surface for approx. 1min. Copious irrigation was done using saline solution and the surface was ablated using the Er:YAG laser at 20pps/50mj.
After the surface was prepped and no signs of residual granulation tissue was noted, the defect was grafted with Geistlich Bio-Oss®. Attention was given towards not augmenting beyond the bony envelope.
A protective Geistlich Bio-Gide® membrane was placed over Geistlich Bio-Oss®.
Geistlich Fibro-Gide® was placed over Geistlich Bio-Gide® to enhance soft-tissue volume and quality. Geistlich Fibro-Gide® was trimmed and adapted to the defect site ensuring a tension free closure.
Geistlich Fibro-Gide® was place on the top of the bone graft to enhance soft-tissue thickness. Geistlich Fibro-Gide® is porous. We can observe the rapid penetration of blood through the matrix.
Closure with a tension-free flap was achieved by releasing incisions and secured using 4-0 chromic gut sutures.
1.5 year post-operative photo and radiograph show the healing of the soft-tissues with no signs of peri-implantitis and adequate tissue thickening. Radiographic bone levels have maintained stable over the course of the year.

Geistlich Fibro-Gide® has the capacity to enhance the soft-tissue during a bone regenerative approach.

THE OUTCOME

My observation at the 1.5 year follow-up shows the elimination of peri-implantitis and complete peri-implant health was achieved showing a reduction in BOP, PD and most importantly soft tissue thickness stability. Radiographically, crestal bone shows no signs of progressive pathological loss and has maintained adequate volume.

Geistlich Fibro-Gide® was utilized to enhance the soft-tissues during a regenerative peri-implantitis approach. In my opinion, healthy, thick soft-tissue is easier for a patient to maintain and creates a better environment for long-term survival.

Hector L. Sarmiento, D.M.D., MSc.

Hector L. Sarmiento, D.M.D., MSc.

Dr. Hector Sarmiento was awarded his D.M.D. degree by the University of Rochester. He is uniquely trained in both maxillofacial surgery and periodontics. He is a professor in the maxillofacial surgery department of trauma and reconstructive unit at the Regional Hospital in Mexico and is an Assistant Clinical Professor in periodontics at the University of Pennsylvania. Along with his periodontal degree, he also received his masters in oral biology from the University of Pennsylvania. Dr. Sarmiento is an international and national lecturer and has published numerous articles in peer reviewed journals and textbooks. His research focus includes infected dental implants such as peri-implantitis, sinus complications as well as bone biology. Dr. Sarmiento maintains his private practice in the upper east side of Manhattan in NYC.

BIOBRIEF

3D Bone Augmentation Using Customized Titanium Mesh in Conjunction with Autogenous Bone and Bovine Bone Material Granules

Dr. Matteo Chiapasco
Matteo Chiapasco, D.D.S., M.D.
Grazia Tommasato, D.D.S., M.S.C.

THE SITUATION

A 75-year-old systemically healthy female came to our attention presenting with absent mandibular second bicuspids and molars and requiring a fixed rehabilitation supported by implants as she refused a removable solution. The clinical and radiographic evaluation showed a relevant vertical and horizontal bone atrophy of such an extent that short or narrow implants were not considered a reliable option. The patient smoked <10 cigarettes per day.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Note: Yxoss CBR® by ReOss® Screws 5mm – MCbio (G-fix system)
watch video download pdf

THE APPROACH

The main goal was to obtain a horizontal and vertical reconstruction of the deficient alveolar bone in order to allow safe and prosthetically-guided implant placement. Reconstruction was obtained by means of a customized titanium mesh, Yxoss CBR®, in combination with a mixture of autologous bone chips harvested from the mandibular ramus and bovine bone mineral, Geistlich Bio-Oss®.

1. Panoramic radiograph of initial situation showing the atrophic mandibular areas.
2. The final Yxoss CBR® ready for use.
3. The customized Ti-mesh is filled with the autologous bone chips mixed with Geistlich Bio-Oss® granules in a 50:50 ratio.
4. Intra-operative view at the end of the reconstruction showing the bone augmentation: the customized mesh was stabilized with 2 fixation screws.
5. A Geistlich Bio-Gide® membrane is used to cover the customized mesh in order to increase the barrier effect.
6. Intra-operative view after primary closure of the surgical wound.
7. Panoramic radiograph after surgery.
8. Clinical control 3 months later showing favorable healing of the soft tissue and correction of the defect.


The 3-dimensional reproduction of the left edentulous area permits the production of a precise and customized Ti-mesh.

THE OUTCOME

Post-operative recovery of this patient was uneventful, no complications such as dehiscence or late exposure of the customized mesh, with complete correction of the initial defect. The Yxoss CBR® allowed an easy and faster reconstruction thanks to the precision of the prefabricated mesh filled with autologous chips, Geistlich Bio-Oss® and Geistlich Bio-Gide®.

While it is important to be an expert in guided bone regeneration, this technique reduces the difficulties to less than one-half and is predictable, effective, and precise.

Matteo Chiapasco, D.D.S., M.D.

GBR combining the use of Geistlich Bio-Oss®, autologous bone chips taken from the mandibular ramus associated with a customized Yxoss CBR®, covered with a Geistlich Bio-Gide®, is a predictable regenerative procedure allowing for the creation of an adequate volume suitable for a prosthetically-guided implant placement with optimization of the final restoration. 

Matteo Chiapasco, D.D.S., M.D.
Dr. Matteo Chiapasco

Matteo Chiapasco, D.D.S., M.D.

Graduated in Medicine and specialized in Maxillofacial Surgery at the University of Milan, Italy. Professor, Unit of Oral Surgery, University of Milan; Associate Professor, Loma Linda University, Los Angeles, California, USA.

Grazia Tommasato, D.D.S., M.S.C.

Graduated in Dentistry in 2013, specialized in Oral Surgery at the University of Milan magna cum laude. PhD student and a medical consultant of the Clinical Unit of Oral Surgery (“G. Vogel” Clinic, Milan).

WEBINAR

WEBINAR

WEBINAR

WEBINAR

WEBINAR

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CHALLENGE:

  • The planning of the patient’s case takes local and general patient-specific risk factors into consideration according to the principles of backward planning for implant positioning.

AIM/APPROACH:

  • Highlights step-by-step the important procedures to regenerate the bone (horizontal and vertical) with the 3-D printing technology, Yxoss CBR®.

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge height for implant placement and proximity to the alveolar nerve
  • Autologous bone harvesting is associated with patient discomfort

AIM/APPROACH:

  • Interpositional grafting with Geistlich Bio-Oss® Block for vertical augmentation
  • Alveolar ridge volume preservation and minimizing patient morbidity

CLINICAL CASE

CLINICAL CHALLENGE:

  • Severely atrophied alveolar ridge with insufficient bone volume for implant placement
  • ­­­­High complication rates and patient discomfort associated with large augmentations when using autologous bone grafts

AIM/APPROACH:

  • 3-dimensional augmentation of alveolar ridge by the fence technique for implant placement
  • At the same time reducing complication rates and patient discomfort

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge width for implant placement
  • Autologous bone is subject to resorption and may lead to loss of volume

AIM/APPROACH:

  • Ridge Split procedure in combination with Geistlich Bio-Oss® and Geistlich Bio-Gide® for horizontal augmentation
  • Preservation of the alveolar ridge volume

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge width for implant placement
  • Donor site morbidity after autologous bone block harvesting and resorption of autologous bone

AIM/APPROACH:

  • Horizontal alveolar ridge augmentation with Geistlich Bio-Oss® and Geistlich Bio-Gide®
  • Minimizing autologous bone harvesting and resorption protection

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CONCLUSIONS:

  • Geistlich Mucograft® with a keratinized tissue strip was utilized to increase vestibular depth and gain additional keratinized tissue.
  • Augmentation of severely atrophied alveolar ridge provided sufficient bone for implant placement 8 months following augmentation.