BIOBRIEF

Mandibular Ridge Augmentation Using Customized Titanium Mesh

Shaun R. Young, DMD

THE SITUATION

A 60-year-old healthy male presented with a failing lower left bridge. Due to a long history of missing teeth, he had a significantly atrophic mandibular ridge. We decided to use a customized titanium mesh to achieve the necessary vertical and horizontal bone augmentation for dental implant rehabilitation.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune systemLight smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

THE APPROACH

The goal of this procedure was to regenerate sufficient bone to place restoratively driven dental implants. Due to the horizontal and vertical ridge deficiency, we used a customized titanium mesh to predictably achieve this outcome.


Autogenous bone collected with SafeScraper Twist and Geistlich Bio-Oss® filled the Yxoss CBR® Protect and a Geistlich Bio-Gide® collagen membrane covered the mesh.

.

Pre-op mandibular ridge after the extraction of teeth #17 and #20. Note the significant horizontal ridge deficiency.
Yxoss CBR® Protect Customized Bone Regeneration Titanium Mesh in place, secured with two Stryker screws, 1.2 mm in diameter and 6 mm in length.
Note the excellent adaptation of the Yxoss CBR® Protect and that the edges are apical to the adjacent bony sockets.
Geistlich Bio-Gide® (resorbable collagen membrane) draped over the Yxoss CBR® Protect to separate osteoblasts from fibroblasts.
Implants restored with single-unit crowns.
Six months post-ridge augmentation.
Guide pins in place for implants #19, #20, and #21, with adequate ridge height and width.
Screw-retained final implant crowns with healthy keratinized tissue on the facial side.

“Success in these cases primarily depends on proper mesh design and careful handling of soft tissue to ensure zero-tension primary closure.”

— Shaun R. Young, DMD

THE OUTCOME

A left mandibular ridge deficiency was corrected using a Yxoss CBR® Protect Customized Bone Regeneration Titanium Mesh, designed from the patient’s CBCT scan. 

Screw-retained final implant crowns with healthy keratinized tissue on the facial side

Guided bone regeneration using Yxoss CBR® Protect to correct vertical and horizontal mandibular ridge deficiencies is a predictable procedure.”

Shaun R. Young, DMD

Shaun R. Young, DMD

Dr. Shaun Young, an Oral and Maxillofacial Surgeon based in Tampa, Florida, specializes in complex ridge augmentation, immediate implants, and All-on-X full arch rehabilitation. He earned his Doctor of Dental Medicine degree from the University of Florida and completed his OMFS residency at Emory University in Atlanta, Georgia, where he served as Administrative Chief Resident. Dr. Young brings his expertise to a full-scope group practice, serving Tampa, Clearwater, and New Port Richey, Florida.

WEBINAR

BIOBRIEF

Selecting Biomaterials for Combined Complex Defects

Irina F. Dragan, DDS, DMD, MS, eMBA

THE SITUATION

The patient called the office complaining of sensitivity and swelling in the maxillary left quadrant. He was seen and prescribed an antibiotic. Tooth #12 was deemed hopeless, and the peri-apical and radicular lesion presented on the radiograph extended significantly on the mesial aspect, impacting the interproximal bone level for tooth #11. Patient presents with implant supported restorations distal to the affected area and was concerned about the infection spreading to that area as well. The area was treated successfully, and the patient was pleased with the outcome, allowing him to preserve the tooth, on the mesial aspect of the lesion and the implant distally.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system/Non-smoker Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

THE APPROACH

The goals of the procedure were to eliminate infection, the source of pain, and reduce periodontal problems to the adjacent tooth and implant. Full thickness flap was reflected, #12 was removed and the socket was debrided and irrigated. A peri-radicular lesion was removed and submitted for histopathological exam.

Initial presentation – buccal view.
Full thickness flap elevation exposing the complex clinical situation.
Alveolar socket after the tooth removal exposing the loss of bone on the distal of tooth #11, prior to the debridement of the granulation tissue and root preparation.
Adaptation on the buccal defect prior to placement of bone grafting with vallos® mineralized cortical cancellous mix granules (bottom) followed Geistlich Bio-Oss® (top).
Post adaptation with Geistlich Bio-Gide® for alveolar ridge preservation and guided tissue regeneration, followed by final suturing of the site using ePTFE material.
Radiographic overview of the clinical procedure: initial presentation with the bony defect impacting distal of #11 and #12 – mesial and inter-radicular, site after the tooth #12 was extracted, radiographic bone fill of the defect post-operative.
Post-operative healing of the site, 4 weeks after the procedure was completed.

“A localized infection can easily spread and impact adjacent teeth and implants. It is critical for clinicians to intervene as soon as possible to prevent further complications. Patient education and motivation is key to successfully treat these types of clinical situations encountered in a daily practice.”

— Dr. Irina Dragan

THE OUTCOME

The combined defect: #11 distal guided tissue regeneration and #12 alveolar ridge preservation for #12. This area was treated with vallos®, Geistlich Bio-Oss Collagen®, and Geistlich Bio-Gide®. The xenograft was placed in the apical portion of the socket and the allograft towards the coronal surface.

Healing of the site at 4 weeks post-operative.

Considering today’s advancements in regeneration we are able to successfully treat complex clinical scenarios that involve combined therapeutic applications, such as guided tissue regeneration and alveolar ridge preservation.”

Dr. Irina Dragan

Periotomes were able to support with an atraumatic extraction of tooth #12 and maintaining as much as possible the soft and hard tissue present in this compromised area.”

Dr. Irina Dragan

Irina F. Dragan, DDS, DMD, MS, eMBA

Periodontology and Implant Dentistry
Dr. Irina Dragan is board certified and an examiner for the American Board of Periodontology and Implant Dentistry. She is part-time faculty in postgraduate periodontics at Harvard School of Dental Medicine and an adjunct associate professor of periodontology at Tufts University School of Dental Medicine. She is a periodontist and clinical researcher at The Perio Studio, a practice limited to periodontology and implant dentistry in Boston, MA.

BIOBRIEF

Odontogenic Keratocyst Management

Bassam Kinaia, DDS, MS, DICOI

THE SITUATION

A 60-year-old-heathy Caucasian female presented with the chief complaint: “I noticed a bump on my lower left teeth since last year.” An examination revealed a stable periodontium except for enlarged gingival tissue between #21-22 measuring 10x8x5mm, well-defined borders, depressible, non-painful, and vital teeth without displacement. The treatment plan included flap surgery, excisional biopsy, GTR #21-22 (Diff Dx: Lateral periodontal cyst (LPC), Odontogenic Keratocyst (OKC), Benign Fibro-Osseous lesion (BFOL).

Guided Tissue Regeneration (GTR) using Geistlich Bio-Oss® and vallos®f was performed and covered with a resorbable collagen membrane (Geistlich Bio-Gide®).

Primary closure was completed using non-resorbable sutures. Follow-up at 2, 4 weeks, 3, 6 months showed stable periodontium without re-occurrence. The pathology report indicated OKC and the area is monitored annually.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

The treatment goal was to excise the lesion around #21-22 and stabilize the periodontium. Sulcular incisions #20-22 with vertical incision #22 MF were performed. Upon full thickness flap reflection, the lesion was removed (excisional biopsy). The defect extended #21M-#22D with complete facial bone loss. It was a wide 1-2 bony wall defect measuring 10x8x5mm. GTR procedure using Geistlich Bio-Oss® and vallos®f and Geistlich Bio-Gide® for the collagen membrane were employed. Primary closure was obtained using 6-0 prolene suture.

Initial clinical and radiographic presentation shows buccal soft tissue enlargement and bone loss #21-22 area.
Clinical facial view showing full thickness flap reflection with complete enucleation of cystic lesion (excisional biopsy).
Clinical view showing hydration of vallos®f and Geistlich Bio-Oss® as two separate grafts.
Clinical facial view showing placement of vallos®f internally for maximum osteogenic/osteoinductive potential and Geistlich Bio-Oss® externally for space maintenance.
Clinical facial view showing placement of Geistlich Bio-Gide® covering the defect and extending one tooth mesillay and distally.
Clinical facial view showing primary closure using 6-0 prolene sutures.
CBCT immediately post-surgery showing radiolucent allograft internally for osseoinduction and radiopaque xenograft externally for space maintenance.
After flap elevation at 4 months showing, the new buccal bone plate together with a completely filled alveolus.
Clinical facial views showing healing at 2 and 4 weeks with proper soft tissue healing.
6 months post-surgery radiographic presentation showing stable periodontium and proper bone fill #21-22 area.
Comparison of pre- and post-surgical CBCT views showing good bone formation.
Comparison of pre- and post-surgical clinical views showing stable periodontium.

“Excisional biopsy and guided tissue regeneration is indicated to treat the pathology (#21-22 area) and stabilize the periodontium.”

— Dr. Bassam Kinaia

THE OUTCOME

Complete excision of pathology and biopsy followed by GTR using vallos®f internally for maximum osteogenic/osteoinductive potential and Geistlich BioOss® externally for space maintenance showed excellent radiographic bone fill and stable periodontium.

Six-month post-surgical clinical view shows stable periodontium.

Guided tissue regeneration using vallos®f bone graft (allograft as an internal first layer), Geistlich Bio-Oss® (as an outside second layer), and collagen membrane showed predictable periodontal regeneration.

Dr. Bassam Kinaia

Bassam Kinaia, DDS, MS, DICOI

Dr. Kinaia is the Associate Director of the Graduate Periodontology Program at the University of Detroit Mercy (UDM). He is also the former Director of the Periodontology Program at UDM in Michigan and Boston University Institute for Dental Research and Education in Dubai. He is a Diplomate of the American Academy of Periodontology (AAP) and International Congress of Oral Implantology (ICOI). He received a certificate of Excellence from the AAP in recognition of teaching-research fellowship.

BIOBRIEF

Successful Implant Placement and Horizontal Augmentation for Bilateral Congenitally Missing Maxillary Incisors

Dr. Avinash Bidra

THE SITUATION

A 30-year-old male patient was referred to me with bilateral congenitally missing lateral incisors in the maxilla. The referring general dentist had previously made a resin-bonded bridge which was successful for a few years but had frequent debondings. Clinical examination revealed lack of ridge contour but the CBCT revealed existence of adequate width for placement of narrow-diameter implants with additional bone grafting and contour augmentation. The existing bone anatomy precluded placement of implants for screw-retained restorations without a pre-surgical lateral ridge augmentation procedure. The patient accepted a treatment plan for placement of two narrow-diameter implants and simultaneous bone grafting and contour augmentation followed by restoration with zirconia cement-retained crowns.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactCompromised
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

My treatment goals were to preserve the existing soft-tissue architecture, especially the interdental papilla, mesial and distal to the lateral incisors, improve the facial contour at the lateral incisor sites by bone grafting with a low substitution biomaterial, and harmonize esthetics and function with optimal implant-supported restorations.

Frontal view revealed adequate contours of soft-tissue especially in gingival height and presence of interdental papilla which needed to be preserved.
Bilateral papilla-sparing incisions were used to preserve the existing papilla and the osteotomies were prepared to allow implant trajectories for cement retained restorations.
An apical fenestration was noted in the osteotomies. After placement of a narrow diameter implant at patient’s right lateral incisor, the site was grafted with a mixture of autologous bone chips and Geistlich Bio-Oss®.
Geistlich Bio-Gide® is trimmed to match the trapezoidal flap design and placed over the graft material.
Healing Abutments 3.5 mm were placed at time of surgery for single-stage healing
After a 3-month healing period, the implants were osseointegrated and then screw-retained provisional crowns were fabricated over both implants. The soft-tissues showed an excellent response to the bone graft materials.
The soft tissues around the implants show excellent maturation and support especially in the interdental papilla region which was preserved during surgery.
Occlusal view shows adequate restoration of the facial contour around the implant restorations indicating excellent outcome from the contour augmentation procedure.
Frontal close-up view of the implant restorations shows pleasing dental and gingival esthetics.

“The patient had failed resin-bonded bridges with deficient contours for bilateral congenitally missing lateral incisors.”

THE OUTCOME

Single-stage implant placement with bilateral papilla-sparing incision design and simultaneous contour augmentation using a mixture of Geistlich Bio-Oss® autologous bone chips and Geistlich Bio-Gide®.

The low substitution bone graft, combined with a rapidly vascularizing membrane, helped to achieve the biological integration of the biomaterial.”

Dr. Avinash Bidra

The use of Geistlich Bio-Gide® and Geistlich Bio-Oss® mixed with autologous bone can lead to a successful outcome in single-stage implant placement with simultaneous contour augmentation.”

Dr. Avinash Bidra

Dr. Avinash Bidra

Dr. Bidra is a Board Certified Maxillofacial Prosthodontist and Director of the Prosthodontics Residency Program at UCONN School of Dental Medicine. He has extensive surgical experience and maintains a part-time private practice restricted to Implant Surgery and Prosthodontics in Meriden, CT. He has lectured at national and international meetings, as well as published extensively in international scientific journals. He has invented prosthetic components and is a co-inventor of a new implant design.

BIOBRIEF

Guided Tissue Regeneration in the Esthetic Zone of a 34-Year-Old Male

Bassam Kinaia, DDS, MS, DICOI

THE SITUATION

A 34-year-old healthy male presented with increased spacing between maxillary left central and lateral incisors. Clinical examination showed deep probing depths between #9-10 area. Cone-beam computed tomography (CBCT) showed vertical bone loss #9-10 wrapping around the palatal surfaces. Treatment recommendation included guided tissue regeneration (GTR) to stabilize the periodontium.

Area #9-10 was debrided and showed a wide 1-2 wall defect measuring ~7mm vertical bone loss. GTR procedure using Geistlich vallomix™ bone graft (allograft + xenograft) and a collagen membrane were employed and primary closure obtained. Healing at 2 and 4 weeks and 6 months showed proper bone fill with stable periodontium.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Correct the vertical bone loss around #9-10 and save the dentition. Sulcular incisions with a paracrestal incision around #9-10 were performed. The area was debrided showing a wide 1-2 bony wall defect (measuring ~7mm vertical bone loss). Primary closure was obtained using 6-0 prolene sutures.

Initial clinical and radiographic presentation showing vertical bone loss #9-10 area
Initial CBCT presentation showing bone loss between #9-10 wrapping palatally
Occlusal clinical views showing sulcular incision with paracrestal incision #9-10
Facial and occlusal clinical views showing full thickness flap reflection with wide 1-2 bony wall defect measuring ~7mm vertical bone loss
Facial clinical views showing full thickness flap reflection and GTR procedure using Geistlich vallomix™ bone graft (allograft as an internal first layer and xenograft as an outside second layer) and collagen membrane
Facial and occlusal clinical views showing primary closure using 6-0 prolene sutures with immediate post-surgical bone addition
Facial and occlusal clinical views showing healing at 10 days with tissue granulating in
Facial and occlusal clinical views showing healing at 6 weeks
Pre-operative vs post-surgical clinical and radiographic views showing adequate bone fill and reduction in probing depths

“Guided tissue regeneration is indicated to correct the vertical bone loss around the #9-10 area and stabilize the periodontium.”

THE OUTCOME

The use of a minimally invasive surgical GTR approach showed excellent radiographic bone fill and reduction in probing depths from 8mm to 3mm at 6 months follow-up. Treatment outcome revealed stable periodontium and the patient was happy with the healthy stable teeth.

6 months follow-up

Guided tissue regeneration using Geistlich vallomix™ bone graft (allograft as an internal first layer and xenograft as an outside second layer) and collagen membrane showed predictable periodontal regeneration.”

Dr. Bassam Kinaia

Understanding the biology of Geistlich vallomix™ to layer the allograft first (internally for better osteogenic potential) and xenograft second (externally due to slower resorption rate) allowed better space maintenance and predictable regeneration.”

Dr. Bassam Kinaia

Bassam Kinaia, DDS, MS, DICOI

Dr. Kinaia is the Associate Director of the Graduate Periodontology Program at the University of Detroit Mercy (UDM). He is also the former Director of the Periodontology Program at UDM in Michigan and Boston University Institute for Dental Research and Education in Dubai. He is a Diplomate of the American Acade- my of Periodontology (AAP) and International Congress of Oral Implantology (ICOI). He received a certificate of Excellence from the AAP in recognition of teaching-research fellowship.

BIOBRIEF

Horizontal Ridge Augmentation in the Posterior Mandible of a 90-Year-Old Female

Dr. Kim Rocky Mount Perio
Dr. John Kim

THE SITUATION

A 90-year-old female presented requesting dental implants be placed in the left mandibular posterior region. Her chief complaint was increased drooling and difficulty chewing on only one side. She lost her bridge one year prior to her visit and firmly stated that she did not want to wear a partial denture. The clinical exam and CBCT showed that there was a horizontal alveolar ridge deficiency that precluded the implants from being placed in a restoratively desirably position. Therefore, a horizontal ridge augmentation was done using multiple layers of Geistlich Bio-Gide® Compressed over a 1:1 ratio of autogenous bone and Geistlich Bio-Oss® xenograft.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: Very limited range of opening
watch video download pdf

THE APPROACH

The treatment goal was to gain adequate horizontal bone dimension to allow for prosthetically-driven implant placement. Guided bone regeneration was performed in which autogenous bone was mixed with Geistlich Bio-Oss® xenograft in a 1:1 ratio. PRF was used to create “sticky bone” and was covered by multiple layers of Geistlich Bio-Gide® Compressed. The membrane was stabilized with periosteal biting stabilizing sutures. Tension-free primary closure was achieved and the grafted site was allowed to heal for 8 months prior to the implant surgery for #19 and #20.

Pre-operative situation showing the horizontal ridge deficiency (left). Buccal bone concavity evident after full thickness flap elevation (middle). There is insufficient bone to place implants in an ideal restorative position (right).
It is important to locate the mental foramen. Intramarrow penetrations were done to allow for improved blood supply to the bone graft.
The clinical cocktail used for guided bone regeneration: 1) 50/50 mixture of autogenous bone chips, collected with Geistlich SafeScraper TWIST, and Geistlich Bio-Oss®, and 2) Geistlich Bio-Gide® Compressed 20 x 30 mm and 13 x 25 mm.
“Sticky bone”, created by combining PRF with the bone graft, adapted well to the site of the defect. Periosteal biting sutures were used for stabilization of the multiple layers of Geistlich Bio-Gide® Compressed and underlying bone graft.
Geistlich Bio-Gide® Compressed was carefully trimmed to be mindful of the mental nerve.
Tension-free primary closure achieved with horizontal mattress sutures and simple interrupted sutures.
Re-entry and CBCT scan at 8 months showing a significant increase in horizonal bone dimension.
Sufficient regenerated bone to allow for implant therapy (left). Implants #19 and #20 placed. Vital bone from guided bone regeneration as evidenced by the bleeding bone (middle). Tension-free primary closure achieved using 5-0 glycolon sutures.

“A predictable ridge augmentation procedure was needed to help our 90-year-old patient avoid having nutritional deficiencies due to lack of proper chewing ability and also to improve her quality of life.”

THE OUTCOME

The horizontal ridge augmentation procedure resulted in adequate bone for implant therapy as evidenced by the CBCT scan and re-entry surgery. With a sufficient quantity of good quality regenerated bone, implants for #19 and #20 were placed using a surgical guide based on a diagnostic wax up. Our 90-year-old patient is very happy to be able to chew efficiently again.

Stabilizing Geistlich Bio-Gide® Compressed and the underlying particulate graft allows for predictable ridge augmentation across multiple edentulous sites.”

Dr. John Kim
Dr. Kim Rocky Mount Perio

Dr. John Kim

Dr. Kim, originally from Fairfax, VA, received his DMD from Harvard School of Dental Medicine. He completed his residency and received his M.S. in Periodontics at UNC School of Dentistry at Chapel Hill. Dr. Kim is a Diplomate of the American Board of Periodontology and actively speaks as an expert on guided bone regeneration, implant therapy, soft tissue grafting, and managing complications domestically and internationally. He is also an adjunct faculty at UNC Adams School of Dentistry.

BIOBRIEF

Horizontal Ridge Augmentation in the Esthetic Zone

Dr. Justin Kang

THE SITUATION

An adult female patient presented with a long history of edentulism at site #9. Patient was interested in replacing her missing tooth with a dental implant, and was wearing a Nesbit appliance. The irritation from the ill-fitting Nesbit appliance resulted in irregular and friable soft-tissue at site #9.

Pre-operative CBCT demonstrated a hard-tissue concavity apical to the crest of the bone. The primary goal of therapy was to regain horizontal dimension of hard and soft-tissue to achieve prosthetically-driven placement of a dental implant to replace the patient‘s left central incisor.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: Lack of mutually protected occlusion on the patient‘s left side due to wear from parafunctional habit.
watch video download pdf

THE APPROACH

The treatment goal was to regain the horizontal dimension of hard and soft-tissue through guided bone regeneration. In coordination with the restoring dentist, a diagnostic wax up was completed to determine the ideal tooth position and to regain mutually protected occlusion on the patient’s left side. The combination of Geistlich Bio-Oss® and autologous bone chips was used along with Geistlich Bio-Gide® to regenerate the horizontal dimension for prosthetically-driven implant placement.

Baseline: compromised soft-tissue architecture at site #9 due to ill-fitting Nesbit appliance.
Sulcular and paracrestal incision for full thickness flap elevation with single vertical incision distal to the site.
Presence of horizontal tissue deficiency clearly visible following flap elevation.
Application of 50:50 mixture of Geistlich Bio-Oss® and autologous bone chips harvested using Geistlich SafeScraper Twist.
Geistlich Bio-Gide® stabilized using fixation pins and covering the graft material.
Tension-free primary closure achieved using 4-0 PTFE sutures.
Soft-tissue contour at 4-month healing. Fixed provisional in place for soft-tissue contouring.
Occlusal view demonstrating gain in horizontal dimension for prosthetically guided implant placement.

“Patient with a long history of partial edentulism was seeking a long-term, predictable restorative option to replace her missing left central incisor.”

THE OUTCOME

Adequate hard and soft-tissue architecture was restored with the use of Geistlich Bio-Oss® and Geistlich Bio-Gide® for predictable, prosthetically-driven implant placement. The combination of Geistlich Bio-Oss® and autologous bone chips provides the best chance for regeneration while maintaining the hard and soft-tissue contours.

Decortication allows for improved blood supply and nutrients to the bone graft.”

Dr. Justin Kang

This case demonstrates the importance of meticulous incision design, flap advancement, and suturing technique to ensure adequate blood supply and nutrients to the graft material and to maintain primary closure throughout the course of healing.”

Dr. Justin Kang

The combination of Geistlich Bio-Oss® and autologous bone chips provides the best chance for regeneration while maintaining the hard and soft-tissue contours.”

Dr. Justin Kang

Dr. Justin Kang

Dr. Justin Kang received his Doctor of Dental Medicine degree from University of Pennsylvania School of Dental Medicine. He completed his residency and received his Masters of Science in Periodontics at Columbia University College of Dental Medicine. Dr. Kang is a Diplomate of the American Board of Periodontology and a member of numerous professional associations including the Academy of Osseointegration, American Dental Association and the New Jersey Dental Association.

BIOBRIEF

Lateral Ridge Augmentation in the Posterior Mandible

Dr. John M. Sisto

THE SITUATION

A 70-year-old female in good health presented with a fracture of tooth #19 which is the distal abutment for a four-unit bridge tooth #19-22, with pontics in the #20 and #21 positions. With the loss of the bridge, the patient desired a fixed prosthetic replacement. A bridge from tooth #22 to an implant placed at the #18 position was not deemed mechanically sound. She opted for implant placement at positions #19, #20 and #21 following lateral ridge augmentation with autogenous bone and Geistlich Bio-Oss® contained with a Geistlich Bio-Gide® membrane.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactCompromised
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

A subperiosteal flap with a mid-ridge incision was performed with anterior and posterior releasing incisions which were placed the distance of one tooth mesial and one tooth distal from the graft site. The posterior releasing incision allowed for exposure of the ramus for harvesting of the autologous bone. The grafted site was allowed to heal for a period of 8 months at which time the implants were placed. Abutment connection occurred 4 months following implant placement.

CT scan showing insufficient bone width for implant placement < 4mm.
Initial incisions on the midcrest of the ridge were performed for full-thickness flap preparation.
Four mucoperiosteal flaps were done with vertical releasing incisions and interosseous holes created to stimulate bone formation (RAP phenomenon).
Harvesting of the autologous cortical bone from the lateral surface of the ramus, utilizing the Geistlich Micross.
Geistlich Bio-Oss® granules mixed with harvested autologous bone chips.
Geistlich Bio-Oss® and autologous bone mixture was placed and covered with Geistlich Bio-Gide®. Pins and screws were utilized for fixation to provide primary stability.
Re-entry 8 months post-grafting: sufficient bone has been regenerated to place implants in the desired positions.
Follow-up at the time of implant uncovering and placement of the healing abutments, (4 months post- implant placement). All implants were successfully reverse torqued at 20ncm.
At re-entry eight months post-grafting, the width of the bone had increased significantly and measured 7.46mm at position #21.

“A bone graft was required to augment the ridge, a CBCT scan was performed prior to surgery to determine bone volume and the amount of bone required to graft.”

THE OUTCOME

Following 8 months of healing, the augmented site showed sufficient bone width that was assessed with a CT scan. After examination, it was determined that the bone width was adequate for implant placement in the desired position to allow an esthetically pleasing and functional outcome for the patient.

The use of Geistlich Bio-Oss® in combination with autogenous bone provides an excellent recipient site for the placement of dental implants and long-term maintenance of bone volume for implant survival.”

Dr. John M. Sisto

The Geistlich Micross is essential in harvesting bone from the lateral ramus in an efficient and stress-free manner.”

Dr. John M. Sisto

Dr. John M. Sisto

Dr. John M. Sisto received his Doctorate in Dental Surgery degree from Loyola University and completed his residency and certification in Oral and Maxilofacial Surgery at the Cook County Hospital in Chicago. Dr. Sisto was the Director of Residency Education at Cook County Hospital from 1985 to 2010 and started the residency program in oral and maxillofacial surgery in 1990. He held teaching positions at both Northwestern and University of Illinois Dental schools as a clinical assistant professor, and also at Northwestern Medical School. He was the Division Chief of Oral and Maxillofacial Surgery at Cook County Hospital and Chairman of Dentistry at Resurrection Medical Center. Dr. Sisto has published papers on dental implant surgery, trauma surgery, orthognathic surgery and maxillofacial infections. He has lectured both locally and nationally at various educational forums.

BIOBRIEF

Bone Augmentation L-Shape Technique with Early Implant Placement

Prof. Dr. Ronald E. Jung

THE SITUATION

The patient presented to the clinic with a discolored tooth #8, with mobility and a history of trauma. The tooth has a horizontal fracture in the apical third of the root and has recurrent infection after the root canal treatment. The patient feels discomfort and dislikes his esthetic appearance. He would like the fractured tooth #8 removed and replaced with a fixed solution.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: The fractured tooth has a periapical lesion together with a severe bone defect around the horizontal fracture.
watch video download pdf

THE APPROACH

To carefully extract tooth #8 and to replace it with an early-stage implant placed with simultaneous guided bone regeneration through the use of Geistlich Bio-Oss Collagen® trimmed in an “L-Shape” under the protection of a Geistlich Bio-Gide® membrane. To augment the peri-implant soft-tissue with the use of a connective tissue graft during implant healing time, increasing the overall volume of site #8. To provisionalize the implant for the development of a proper emergence profile. To deliver a definitive reconstruction which is functional and esthetic for the patient.

The patient presented to the clinic with a discolored tooth #8, with mobility and a history of trauma. The tooth has a horizontal fracture in the apical third of the root and has recurrent infection after the root canal treatment.
The tooth has had root canal treatment, has a horizontal root fracture in the apical third and exhibits with a periapical lesion.
The tooth is carefully extracted and the socket is left to heal through unassisted healing.
After 6 weeks a full thickness flap is elevated with a distal releasing vertical incision. A bone level implant is placed according to the prosthetic plan through a surgical guide. Notice the buccal dehiscence.
Geistlich Bio-Oss Collagen® is trimmed to an “L-Shape” and is placed on the buccal-occlusal side of the implant. Additional Geistlich Bio-Oss® granules are placed around the remaining gaps.
To stabilize the grafted area the bone augmentation is covered with Geistlich Bio-Gide®, which is fixated apically with two resorbable pins.
The flap is sutured with horizontal mattress and single interrupted sutures and primary closure is achieved.
Four months after implant placement, a limited access “U”-flap was created and an implant impression was taken. The tissue was rolled to the buccal side and the abutment connection was performed.
The definitive layered zirconia crown was fabricated and placed. The clinical situation 5 months after implant placement, shows harmonious soft tissue and a well-integrated implant crown. The patient is satisfied with the esthetic result.
The periapical radiograph taken at the one-year follow-up shows stable marginal bone levels.

“A fractured anterior tooth needs to be replaced with an implant-supported reconstruction.”

THE OUTCOME

The implant and its prosthetic reconstruction were successful because they provided the patient with a fixed solution with adequate function and esthetics. The implant shows stable marginal bone levels due to the proper implant placement together with the guided bone regeneration procedure. The peri-implant soft-tissue is healthy and stable with sufficient volume created by the soft-tissue augmentation. The definitive reconstruction meets the patient’s esthetic demands and is functional in occlusion.

By using Geistlich Bio-Oss Collagen® trimmed into an “L-Shape” covered with Geistlich Bio-Gide® a very stable horizontal and vertical bone volume around the implant is provided. This results in a stable hard and soft-tissue condition following healing. This is key for the long-term performance of an implant especially in the esthetic zone.”

Prof. Dr. Ronald Jung

Four months after implant placement a limited access “U”-flap was created and an implant impression was taken. The tissue was rolled to the buccal side and the abutment connection was performed.”

Prof. Dr. Ronald Jung

Primary stability of the augmented bone volume is the clinical challenge in guided bone regeneration after flap closure. In this case Geistlich Bio-Oss Collagen® has been used to augment on the buccal side of the implant.”

Prof. Dr. Ronald Jung

Prof. Dr. Ronald E. Jung

Prof. Dr. Jung is currently Head of the Division of Implantology, Clinic for Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine at the University of Zürich. In 2006 he worked as Visiting Associate Professor at the Department of Periodontics at the University of Texas Heath Science center at San Antonio, USA (Chairman: Prof. D. Cochran). In 2008 he finalized his “Habilitation” (venia legendi) in dental medicine and was appointed associate professor at the University of Zürich. In 2011 he received his PhD degree from the University of Amsterdam, ACTA dental school, The Netherlands. He is an accomplished and internationally renowned lecturer and researcher, best known for his work in the field of hard- and soft-tissue management and his research on new technologies in implant dentistry.

BIOBRIEF

Combined Horizontal and Vertical Regeneration Using a CAD-CAM Titanium Scaffold

Dr. Gian Maria Ragucci
Prof. Federico Hernández-Alfaro

THE SITUATION

A 54-year-old, systematically healthy male patient (*ASA) came to our attention presenting with partial edentulism in the lower jaw and requiring a fixed and esthetic rehabilitation, refusing any removable solution. The clinical and radiographic evaluation resulted in significant bone atrophy both in the vertical and horizontal components; which makes it impossible to place both conventional implants and short or narrow implants.

*American Society of Anesthesiologists Physical Status Classification System

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Solving the case was developed in two steps: first bone reconstruction to restore the ideal anatomy, second positioning of the prosthetically guided implants. An individualized regeneration technique was chosen using a CAD-CAM titanium scaffold (Yxoss CBR®) in conjunction with a mix of 60% autogenous bone and 40% Geistlich Bio-Oss®, covered by Geistlich Bio-Gide®. At 9 months, the titanium scaffold was easily removed and 3 prosthetically guided implants were placed, completely surrounded by bone. At 12 months, a free gingival graft was performed to re-establish the missing amount of keratinized mucosa. Finally, at 16 months, the final rehabilitation was carried out with a fixed prosthesis on implants.

Panoramic radiographic view of the defect
Horizontal and vertical augmentation step by step
Baseline situation (left) and 9-month follow-up (right)
Scaffold removal and implant placement step by step
Soft-tissue management with free gingival graft
Final restoration
Periapical radiographs of implants and prosthesis
Final restoration at 16 months

“Combined horizontal and vertical bone augmentation utilizing a CAD CAM titanium scaffold can be achieved with less surgical time and less complications.”

THE OUTCOME

The final resolution of the case was very satisfactory. There were no complications during all the procedures performed. The Yxoss CBR® allowed for easier reconstructive surgery and a significant reduction in surgical times, thanks to the precise dimensions of the scaffold. This resulted in a favorable post- operative situation for the patient and complications were prevented.

Final restoration at 16 months

Vertical bone reconstruction combining the use of Yxoss CBR®, Geistlich Bio-Oss® and Geistlich Bio-Gide® allows a predictable regenerative procedure that is able to create sufficient bone volume suitable for prosthetically guided implant placement.”

Dr. Gian Maria Ragucci

The use of CAD-CAM Titanium scaffold Yxoss CBR® allows an ideal bone regeneration and a faster and easier surgery.”

Dr. Gian Maria Ragucci

Dr. Gian Maria Ragucci

Universitat Internacional de Catalunya (UIC), Barcelona Dental degree at Universidad Europea de Madrid 2015
International Master in oral surgery at UIC, Barcelona 2018
PhD student at UIC, Barcelona 2018
EAO Certification program in implant dentistry 2018
EAO European prize in implant dentistry 2019

Prof. Federico Hernández-Alfaro

Full professor & Chairman, Department of Oral and Maxillofacial Surgery, UIC, Barcelona
Institute of Maxillofacial Surgery, Teknon Medical Center, Barcelona

BIOBRIEF

Prosthetically Guided Regeneration (PGR) in the Posterior Maxilla

Paolo Casentini, DDS

THE SITUATION

The 60-year-old female patient’s chief complaint was represented by unsatisfactory esthetics and function, related to loss of multiple maxillary teeth. Her request focused on improving esthetics and function by means of a fixed reconstruction.

The patient presented five residual anterior maxillary teeth (from 6 to 10) that could be maintained. After preliminary periodontal diagnosis and treatment, specific diagnostic steps for implant treatment demonstrated inadequate bone volume for implant placement.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Bi-lateral sinus lift with Geistlich Bio-Oss Pen® and horizontal bone augmentation with a 1:1 mix of autogenous bone and Geistlich Bio-Oss® were performed six months prior to implant placement, following a Prosthetically Guided Regenerative (PGR) approach. The augmented sites were protected with Geistlich Bio-Gide® stabilized with titanium pins. The template utilized for radiographic diagnosis and GBR was then used to guide the implants’ placement.

Baseline full-mouth intra-oral view: the residual maxillary teeth were preliminarily reconstructed with a composite mock-up. The horizontal atrophy of the posterior areas of the maxilla is clearly visible.
The cone beam, realized with a radio-opaque diagnostic template, shows inadequate bone volume for implant placement in all the analyzed sites.
The use of the diagnostic template during the augmentation procedure helps to highlight the presence of bone defects in relationship to the restorative plan and future position of implants.
Large Geistlich Bio-Oss® particles are directly applied inside the sinus with Geistlich Bio-Oss Pen®.
The Geistlich Bio-Gide®, fixed with titanium pins is used to protect and stabilize the augmented site. As the surgical template shows, the bone augmentation is based on the future restorative project following the principle of PGR.
The same surgical procedure is performed on the left posterior side of the maxilla.
Cone-beam 6 months after surgery and prior to implant placement. The relationship between the template used for diagnosis and the bone crest reveals adequate bone volume to place implants in the correct prosthetically driven position.
Implant placement was guided by the same template utilized for diagnosis and bone augmentation.
Final view of the prosthetic reconstruction demonstrates bio-mimetic integration of implant-supported prostheses and ceramic veneers bonded to residual natural teeth.
The panoramic radiograph shows adequate integration of the implants and absence of peri-implant bone resorption.

Using a diagnostic template during the GBR procedure helps to highlight the presence of bone defects in relationship to the restorative plan and future position of implants.

THE OUTCOME

After a healing period of six months, adequate bone volume was achieved for the placement of five implants. Geistlich Fibro-Gide® was also used to optimize soft tissue volume at the buccal aspect of implants.

Implants were early loaded with a temporary screw-retained fixed prostheses six weeks after placement. The final prosthetic reconstruction included ceramic veneers of the frontal residual teeth and zirconium-ceramic screw-retained fixed prostheses on implants.

Patient satisfaction is my driver for excellence. That’s why I always apply the Prosthetically Guided Regeneration principle together with Geistlich Biomaterials: proven and predictable long-term patient success.”

Paolo Casentini, DDS

Paolo Casentini, DDS

Graduated in Dentistry at the University of Milan, Fellow and Past Chairman of the Italian section of ITI, Active member Italian Academy of Osseointegration. Co-author of 10 textbooks including ITI Treatment Guide volume 4, translated in eight languages, and “Pink Esthetic and Soft Tissues in Implant Dentistry” translated in five languages. His field of interest is advanced implantology in complex and esthetically demanding cases. He has extensively lectured in more than 40 countries.

BIOBRIEF

A Regenerative Approach to Peri-implantitis

Hector L. Sarmiento, D.M.D., MSc.

THE SITUATION

A 55-year-old man was referred to me by his general dentist. Upon initial clinical and radiographic findings, failing implant #9 showed signs of peri-implantitis that included BoP, Suppuration, 9+mm PD and radiographic bone loss affecting both the implant and the natural adjacent tooth. Patient stated that although his gums bleed, he does not have any pain. Gingival erythema was also found.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Note: Peri-implantitis on implant #9 migrating to the mesial portion of root #8
watch video download pdf

THE APPROACH

The clinical goals were to eliminate the peri-implant infection, restore hard and soft-tissues and have long-term success. The technique utilized was a systematic regenerative approach to eliminate the underlying cause of the peri-implantitis infection and restore hard and soft-tissues to prior health.

Initial situation, patient presented with radiographic and clinically traditional signs of peri-implantitis, including bleeding on probing, suppuration, radiographic progressive bone loss and clinical pathologic probing depths.
Mechanical debridement was achieved using titanium scalers, an ultrasonic device with an implant protective cap and titanium brushes to remove all of the visible contaminants of the implant surface. Citric acid was then placed on shreds of a non-woven gauze and applied to the surface for approx. 1min. Copious irrigation was done using saline solution and the surface was ablated using the Er:YAG laser at 20pps/50mj.
After the surface was prepped and no signs of residual granulation tissue was noted, the defect was grafted with Geistlich Bio-Oss®. Attention was given towards not augmenting beyond the bony envelope.
A protective Geistlich Bio-Gide® membrane was placed over Geistlich Bio-Oss®.
Geistlich Fibro-Gide® was placed over Geistlich Bio-Gide® to enhance soft-tissue volume and quality. Geistlich Fibro-Gide® was trimmed and adapted to the defect site ensuring a tension free closure.
Geistlich Fibro-Gide® was place on the top of the bone graft to enhance soft-tissue thickness. Geistlich Fibro-Gide® is porous. We can observe the rapid penetration of blood through the matrix.
Closure with a tension-free flap was achieved by releasing incisions and secured using 4-0 chromic gut sutures.
1.5 year post-operative photo and radiograph show the healing of the soft-tissues with no signs of peri-implantitis and adequate tissue thickening. Radiographic bone levels have maintained stable over the course of the year.

Geistlich Fibro-Gide® has the capacity to enhance the soft-tissue during a bone regenerative approach.

THE OUTCOME

My observation at the 1.5 year follow-up shows the elimination of peri-implantitis and complete peri-implant health was achieved showing a reduction in BOP, PD and most importantly soft tissue thickness stability. Radiographically, crestal bone shows no signs of progressive pathological loss and has maintained adequate volume.

Geistlich Fibro-Gide® was utilized to enhance the soft-tissues during a regenerative peri-implantitis approach. In my opinion, healthy, thick soft-tissue is easier for a patient to maintain and creates a better environment for long-term survival.

Hector L. Sarmiento, D.M.D., MSc.

Hector L. Sarmiento, D.M.D., MSc.

Dr. Hector Sarmiento was awarded his D.M.D. degree by the University of Rochester. He is uniquely trained in both maxillofacial surgery and periodontics. He is a professor in the maxillofacial surgery department of trauma and reconstructive unit at the Regional Hospital in Mexico and is an Assistant Clinical Professor in periodontics at the University of Pennsylvania. Along with his periodontal degree, he also received his masters in oral biology from the University of Pennsylvania. Dr. Sarmiento is an international and national lecturer and has published numerous articles in peer reviewed journals and textbooks. His research focus includes infected dental implants such as peri-implantitis, sinus complications as well as bone biology. Dr. Sarmiento maintains his private practice in the upper east side of Manhattan in NYC.

BIOBRIEF

3D Bone Augmentation Using Customized Titanium Mesh in Conjunction with Autogenous Bone and Bovine Bone Material Granules

Dr. Matteo Chiapasco
Matteo Chiapasco, D.D.S., M.D.
Grazia Tommasato, D.D.S., M.S.C.

THE SITUATION

A 75-year-old systemically healthy female came to our attention presenting with absent mandibular second bicuspids and molars and requiring a fixed rehabilitation supported by implants as she refused a removable solution. The clinical and radiographic evaluation showed a relevant vertical and horizontal bone atrophy of such an extent that short or narrow implants were not considered a reliable option. The patient smoked <10 cigarettes per day.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: Yxoss CBR® by ReOss® Screws 5mm – MCbio (G-fix system)
watch video download pdf

THE APPROACH

The main goal was to obtain a horizontal and vertical reconstruction of the deficient alveolar bone in order to allow safe and prosthetically-guided implant placement. Reconstruction was obtained by means of a customized titanium mesh, Yxoss CBR®, in combination with a mixture of autologous bone chips harvested from the mandibular ramus and bovine bone mineral, Geistlich Bio-Oss®.

Panoramic radiograph of initial situation showing the atrophic mandibular areas.
The final Yxoss CBR® ready for use.
The customized Ti-mesh is filled with the autologous bone chips mixed with Geistlich Bio-Oss® granules in a 50:50 ratio.
Intra-operative view at the end of the reconstruction showing the bone augmentation: the customized mesh was stabilized with 2 fixation screws.
A Geistlich Bio-Gide® membrane is used to cover the customized mesh in order to increase the barrier effect.
Intra-operative view after primary closure of the surgical wound.
Panoramic radiograph after surgery.
Clinical control 3 months later showing favorable healing of the soft tissue and correction of the defect.


The 3-dimensional reproduction of the left edentulous area permits the production of a precise and customized Ti-mesh.

THE OUTCOME

Post-operative recovery of this patient was uneventful, no complications such as dehiscence or late exposure of the customized mesh, with complete correction of the initial defect. The Yxoss CBR® allowed an easy and faster reconstruction thanks to the precision of the prefabricated mesh filled with autologous chips, Geistlich Bio-Oss® and Geistlich Bio-Gide®.

While it is important to be an expert in guided bone regeneration, this technique reduces the difficulties to less than one-half and is predictable, effective, and precise.

Matteo Chiapasco, D.D.S., M.D.

GBR combining the use of Geistlich Bio-Oss®, autologous bone chips taken from the mandibular ramus associated with a customized Yxoss CBR®, covered with a Geistlich Bio-Gide®, is a predictable regenerative procedure allowing for the creation of an adequate volume suitable for a prosthetically-guided implant placement with optimization of the final restoration.

Matteo Chiapasco, D.D.S., M.D.
Dr. Matteo Chiapasco

Matteo Chiapasco, D.D.S., M.D.

Graduated in Medicine and specialized in Maxillofacial Surgery at the University of Milan, Italy. Professor, Unit of Oral Surgery, University of Milan; Associate Professor, Loma Linda University, Los Angeles, California, USA.

Grazia Tommasato, D.D.S., M.S.C.

Graduated in Dentistry in 2013, specialized in Oral Surgery at the University of Milan magna cum laude. PhD student and a medical consultant of the Clinical Unit of Oral Surgery (“G. Vogel” Clinic, Milan).

WEBINAR

WEBINAR

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CHALLENGE:

  • The planning of the patient’s case takes local and general patient-specific risk factors into consideration according to the principles of backward planning for implant positioning.

AIM/APPROACH:

  • Highlights step-by-step the important procedures to regenerate the bone (horizontal and vertical) with the 3-D printing technology, Yxoss CBR®.

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge height for implant placement and proximity to the alveolar nerve
  • Autologous bone harvesting is associated with patient discomfort

AIM/APPROACH:

  • Interpositional grafting with Geistlich Bio-Oss® Block for vertical augmentation
  • Alveolar ridge volume preservation and minimizing patient morbidity

CLINICAL CASE

CLINICAL CHALLENGE:

  • Severely atrophied alveolar ridge with insufficient bone volume for implant placement
  • ­­­­High complication rates and patient discomfort associated with large augmentations when using autologous bone grafts

AIM/APPROACH:

  • 3-dimensional augmentation of alveolar ridge by the fence technique for implant placement
  • At the same time reducing complication rates and patient discomfort

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge width for implant placement
  • Autologous bone is subject to resorption and may lead to loss of volume

AIM/APPROACH:

  • Ridge Split procedure in combination with Geistlich Bio-Oss® and Geistlich Bio-Gide® for horizontal augmentation
  • Preservation of the alveolar ridge volume

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge width for implant placement
  • Donor site morbidity after autologous bone block harvesting and resorption of autologous bone

AIM/APPROACH:

  • Horizontal alveolar ridge augmentation with Geistlich Bio-Oss® and Geistlich Bio-Gide®
  • Minimizing autologous bone harvesting and resorption protection

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CONCLUSIONS:

  • Geistlich Mucograft® with a keratinized tissue strip was utilized to increase vestibular depth and gain additional keratinized tissue.
  • Augmentation of severely atrophied alveolar ridge provided sufficient bone for implant placement 8 months following augmentation.