BIOBRIEF

Bone Grafting and Immediate Implant Placement in the Maxillary First Molar Region

Waldemar D. Polido, DDS, MMS, PhD
Wel-Shao Lin, DDS, FACP, PhD, MBA

THE SITUATION

Patient presented with unrestorable left maxillary first molar. After data collection with Cone Beam Computed Tomography (CBCT) and intra-oral scanning, and clinical examination, the situation was considered favorable for minimally traumatic extraction and immediate implant placement.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune systemLight smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Additional Risk Factors: Roots were divergent, and intra-radicular bone (septal bone) was excellent, with more than 5 mm of remaining apical bone to achieve optimal primary stability.

THE APPROACH

A fully guided approach was utilized, with an immediate provisional Computer-Aided Design (CAD) and Computer Aided Manufacturing (CAM) crown. Alveolar socket gaps were grafted with Geistlich Bio-Oss Collagen®, after implant placement. The provisional crown was used also as a socket seal, optimizing healing. After 3 months, a final ceramic crown was delivered. A one-year and a three-year follow-up show excellent clinical contour of the alveolar bone, and integration of the implant.

Pre-operative occlusal view showing the involved tooth’s condition.
Pre-operative periapical radiograph capturing the cross-section of the involved tooth.
Comprehensive Digital Planning for Implant Placement – A multi-view CBCT and 3D reconstruction showcasing precise anatomical assessment and guided surgical approach.
Geistlich Bio-Oss Collagen® placement, demonstrating the material packed around the implant within the socket.
Immediate provisional crown, occlusal view showcasing restoration alignment technique.
Immediate crown periapical view, reflecting the initial stability of the implant and prosthesis.
Final crown occlusal view, illustrating the restoration’s integration and final crown periapical view, emphasizing implant stability post-restoration.
Occlusal view at the 3-year post-implant placement, highlighting tissue health and crown durability. Periapical CBCT view at the 3-year post-implant placement, providing insight into bone stability over time.

“Immediate implant placement and loading in molars is a feasible technique, with excellent long-term outcomes, if case selection is adequate, treatment planning is optimized by digital technology, and proper surgical and restorative techniques are applied.”

— Waldemar D. Polido, DDS, MS, PhD

THE OUTCOME

This case shows a three-year follow-up of an immediate implant placement, using Geistlich Bio-Oss Collagen® as a graft material on the gap. Careful tissue management, minimally traumatic extraction, and proper planning, including guided implant surgery can optimize treatment outcomes.

Immediate implant placement usually requires a bone graft to fill the gap between the implant and the socket walls. The use of bovine granules with the addition of porcine collagen (Geistlich Bio-Oss Collagen®) has demonstrated long-term stability to maintain alveolar contour and optimal bone level and soft tissue support around implants.”

Waldemar D. Polido, DDS, MS, PhD

Waldemar D. Polido, DDS, MMS, PhD

Dr. Polido is an Oral and Maxillofacial Surgeon with MS and PhD degrees from the PUCRS School of Dentistry in Porto Alegre, RS, Brazil. He completed his residency in Oral and Maxillofacial Surgery at The University of Texas, Southwestern Medical Center in Dallas, Texas. Currently, Dr. Polido is a Clinical Professor of Oral and Maxillofacial Surgery at the Indiana University School of Dentistry. He is also the Co-Director of the Center for Implant, Esthetic, and Innovative Dentistry at Indiana University School of Dentistry in Indianapolis.

Wel-Shao Lin, DDS, FACP, PhD, MBA

Dr. Lin is a tenured Professor and Chair of Prosthodontics at Indiana University School of Dentistry. He earned his DDS from Chung-Shan and Surgical Implant Fellowship at the University of Rochester (2010). He holds a PhD in Educational Leadership (2020) and an MBA in Healthcare Administration (2022) and is currently pursuing a Master’s Intelligence. Dr. Lin specializes in dental implants, digital dentistry, and AI applications, with over 120 peer-reviewed publications. A Diplomate of the American Board of Prosthodontics and Fellow of ITI and ACP, he also serves as an associate editor for the Journal of Prosthodontics and maintains a clinical practice at Indiana University.

BIOBRIEF

Prosthetic-Surgical Approach to Regenerative Treatment for Peri-Implantitis

Andrea Ravidà, DDS, MS, PhD
Anu Viswanathan DDS, MDS

THE SITUATION

A 68-year-old male patient, who received an implant in tooth position #31 about 8 years prior, presented for an examination. He reports bleeding during brushing around the implant and some discomfort. Clinically, there was severe vertical bone loss, profuse bleeding on probing, and deep probing depths, but no pain. The condition was diagnosed as peri-implantitis according to the 2018 classification.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune systemLight smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Infection at implant sightNoneChronicAcute
Restorative status of adjacent toothIntactRestored
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Additional Risk Factors: The patient exhibited bleeding on probing and deep pocket depths. He also reported occasional marijuana use and was inconsistent with periodontal maintenance and oral hygiene visits.

watch video download pdf

THE APPROACH

The treatment goals were to eliminate peri-implant infection, regenerate lost hard and soft tissues, and ensure long-term implant stability. A closed regenerative approach was utilized, including crown removal, thorough implant decontamination with Perioflow®, an airpolishing technology, application of the correct bone grafting materials (Geistlich Bio-Oss®, vallos® and GEM 21S®), enclosed healing, and fabrication of a new crown to facilitate hygiene.

Clinical presentation of tooth #31 showing radiographic evidence of bone loss, profuse bleeding on probing (BOP), deep probing depths, and suppuration, indicative of peri-implantitis with a Class I-infraosseous (c) circumferential-type defect, as described in the study by Monje et al. (2019) Clin Implant Relat Res, 21(4)635-643.
Crown removal by the prosthodontist, followed by placement of a healing abutment for non-surgical therapy using PerioFlow®. After therapy, a cover screw was placed, and the tissue was allowed to heal over the implant for eight weeks.
Surgical treatment initiated with a midcrestal incision and full-thickness flap elevation. Granulation tissue was removed using a surgical curette, revealing a deep infrabony defect.
Implant thoroughly decontaminated using Perioflow® with erythritol powder to ensure a clean surface for regeneration.
rhPDGF-BB was used to hydrate bone grafting materials (vallos® Demineralized Cortical Granules and Geistlich Bio-Oss®), which were first hydrated with sterile water before rhPDGF-BB was added. The materials were mixed in a 1:1 ratio and allowed to sit for 10 minutes before being applied to the deep infrabony defect to promote regeneration.
Flap closed primarily with 5-0 PTFE horizontal mattress and single interrupted suture for secure closure.
Collagen membrane stabilized with 5-0 chromic gut sutures using the lasso technique.
After 5 months of healing, significant bone gain is evident. Geistlich Bio-Oss® was placed on the buccal site to enhance thickness, covered with an amnion-chorion membrane. A healing abutment was placed at this stage.
Two-year follow-up shows disease resolution with shallow probing depths, no bleeding or suppuration, and complete bone gain. A new crown was fabricated with an increased final abutment height (>2mm), contributing to optimal maintenance and long-term stability based on evidence supporting its role in promoting long-term success. A second surgery may be necessary to gain additional tissue thickness or cover residual thread exposure to achieve the desired long-term results.

“The implant presented with significant bone loss, deep probing depths, and bleeding on probing, placing it at risk of failure and requiring intervention to preserve function and longevity.”

— Andrea Ravidà, DDS, MS, PhD

THE OUTCOME

At the two-year follow-up, clinical and radiographic assessments showed disease resolution, complete bone gain, and stable peri-implant tissues. Probing depths were within healthy ranges, and no bleeding on probing was observed, confirming the long-term success of the treatment.

Enclosed healing, meticulous implant decontamination, appropriate selection of bone grafting materials, and customized crown design, combined with patient compliance and regular maintenance, contributed to disease resolution and complete bone regeneration.”

Andrea Ravidà, DDS, MS, PhD

The air polishing device with erythritol powder ensured thorough implant decontamination, while the bone grafting materials combined with rhPDGF-BB provided essential biologic support for regeneration and improved peri-implantitis treatment outcomes.”

Andrea Ravidà, DDS, MS, PhD

Andrea Ravidà, DDS, MS, PhD

Dr. Andrea Ravidà is the Director of the Graduate Periodontics Program in the department of Periodontics at the University of Pittsburgh. He conducts clinical research focusing on peri-implantitis, periodontitis and short implants. He has published more than 70 peer-reviewed articles and conference abstracts/presentations related to periodontics and implant therapy. He is section editor of the International Journal of Oral Implantology and the Journal of Translational Medicine.

Anu Viswanathan DDS, MDS

Dr. Anu Viswanathan is a Diplomate of the American Board of Periodontology and Implant Dentistry. She earned her Doctor of Dental Surgery degree from the University of Colorado School of Dental Medicine in 2019. Dr. Viswanathan completed a Certificate in Periodontics and earned a Master of Dental Science at the University of Pittsburgh School of Dental Medicine. She also obtained a Certificate in IV Sedation. Dr. Viswanathan is currently in private practice in Shoreline, Connecticut.

Sorry, you do not have permission to view this content.

Sorry, you do not have permission to view this content.

Sorry, you do not have permission to view this content.

Sorry, you do not have permission to view this content.

Sorry, you do not have permission to view this content.

BIOBRIEF

Odontogenic Keratocyst Management

Bassam Kinaia, DDS, MS, DICOI

THE SITUATION

A 60-year-old-heathy Caucasian female presented with the chief complaint: “I noticed a bump on my lower left teeth since last year.” An examination revealed a stable periodontium except for enlarged gingival tissue between #21-22 measuring 10x8x5mm, well-defined borders, depressible, non-painful, and vital teeth without displacement. The treatment plan included flap surgery, excisional biopsy, GTR #21-22 (Diff Dx: Lateral periodontal cyst (LPC), Odontogenic Keratocyst (OKC), Benign Fibro-Osseous lesion (BFOL).

Guided Tissue Regeneration (GTR) using Geistlich Bio-Oss® and vallos®f was performed and covered with a resorbable collagen membrane (Geistlich Bio-Gide®).

Primary closure was completed using non-resorbable sutures. Follow-up at 2, 4 weeks, 3, 6 months showed stable periodontium without re-occurrence. The pathology report indicated OKC and the area is monitored annually.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

The treatment goal was to excise the lesion around #21-22 and stabilize the periodontium. Sulcular incisions #20-22 with vertical incision #22 MF were performed. Upon full thickness flap reflection, the lesion was removed (excisional biopsy). The defect extended #21M-#22D with complete facial bone loss. It was a wide 1-2 bony wall defect measuring 10x8x5mm. GTR procedure using Geistlich Bio-Oss® and vallos®f and Geistlich Bio-Gide® for the collagen membrane were employed. Primary closure was obtained using 6-0 prolene suture.

Initial clinical and radiographic presentation shows buccal soft tissue enlargement and bone loss #21-22 area.
Clinical facial view showing full thickness flap reflection with complete enucleation of cystic lesion (excisional biopsy).
Clinical view showing hydration of vallos®f and Geistlich Bio-Oss® as two separate grafts.
Clinical facial view showing placement of vallos®f internally for maximum osteogenic/osteoinductive potential and Geistlich Bio-Oss® externally for space maintenance.
Clinical facial view showing placement of Geistlich Bio-Gide® covering the defect and extending one tooth mesillay and distally.
Clinical facial view showing primary closure using 6-0 prolene sutures.
CBCT immediately post-surgery showing radiolucent allograft internally for osseoinduction and radiopaque xenograft externally for space maintenance.
After flap elevation at 4 months showing, the new buccal bone plate together with a completely filled alveolus.
Clinical facial views showing healing at 2 and 4 weeks with proper soft tissue healing.
6 months post-surgery radiographic presentation showing stable periodontium and proper bone fill #21-22 area.
Comparison of pre- and post-surgical CBCT views showing good bone formation.
Comparison of pre- and post-surgical clinical views showing stable periodontium.

“Excisional biopsy and guided tissue regeneration is indicated to treat the pathology (#21-22 area) and stabilize the periodontium.”

— Dr. Bassam Kinaia

THE OUTCOME

Complete excision of pathology and biopsy followed by GTR using vallos®f internally for maximum osteogenic/osteoinductive potential and Geistlich BioOss® externally for space maintenance showed excellent radiographic bone fill and stable periodontium.

Six-month post-surgical clinical view shows stable periodontium.

Guided tissue regeneration using vallos®f bone graft (allograft as an internal first layer), Geistlich Bio-Oss® (as an outside second layer), and collagen membrane showed predictable periodontal regeneration.

Dr. Bassam Kinaia

Bassam Kinaia, DDS, MS, DICOI

Dr. Kinaia is the Associate Director of the Graduate Periodontology Program at the University of Detroit Mercy (UDM). He is also the former Director of the Periodontology Program at UDM in Michigan and Boston University Institute for Dental Research and Education in Dubai. He is a Diplomate of the American Academy of Periodontology (AAP) and International Congress of Oral Implantology (ICOI). He received a certificate of Excellence from the AAP in recognition of teaching-research fellowship.

BIOBRIEF

Successful Implant Placement and Horizontal Augmentation for Bilateral Congenitally Missing Maxillary Incisors

Dr. Avinash Bidra

THE SITUATION

A 30-year-old male patient was referred to me with bilateral congenitally missing lateral incisors in the maxilla. The referring general dentist had previously made a resin-bonded bridge which was successful for a few years but had frequent debondings. Clinical examination revealed lack of ridge contour but the CBCT revealed existence of adequate width for placement of narrow-diameter implants with additional bone grafting and contour augmentation. The existing bone anatomy precluded placement of implants for screw-retained restorations without a pre-surgical lateral ridge augmentation procedure. The patient accepted a treatment plan for placement of two narrow-diameter implants and simultaneous bone grafting and contour augmentation followed by restoration with zirconia cement-retained crowns.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactCompromised
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

My treatment goals were to preserve the existing soft-tissue architecture, especially the interdental papilla, mesial and distal to the lateral incisors, improve the facial contour at the lateral incisor sites by bone grafting with a low substitution biomaterial, and harmonize esthetics and function with optimal implant-supported restorations.

Frontal view revealed adequate contours of soft-tissue especially in gingival height and presence of interdental papilla which needed to be preserved.
Bilateral papilla-sparing incisions were used to preserve the existing papilla and the osteotomies were prepared to allow implant trajectories for cement retained restorations.
An apical fenestration was noted in the osteotomies. After placement of a narrow diameter implant at patient’s right lateral incisor, the site was grafted with a mixture of autologous bone chips and Geistlich Bio-Oss®.
Geistlich Bio-Gide® is trimmed to match the trapezoidal flap design and placed over the graft material.
Healing Abutments 3.5 mm were placed at time of surgery for single-stage healing
After a 3-month healing period, the implants were osseointegrated and then screw-retained provisional crowns were fabricated over both implants. The soft-tissues showed an excellent response to the bone graft materials.
The soft tissues around the implants show excellent maturation and support especially in the interdental papilla region which was preserved during surgery.
Occlusal view shows adequate restoration of the facial contour around the implant restorations indicating excellent outcome from the contour augmentation procedure.
Frontal close-up view of the implant restorations shows pleasing dental and gingival esthetics.

“The patient had failed resin-bonded bridges with deficient contours for bilateral congenitally missing lateral incisors.”

THE OUTCOME

Single-stage implant placement with bilateral papilla-sparing incision design and simultaneous contour augmentation using a mixture of Geistlich Bio-Oss® autologous bone chips and Geistlich Bio-Gide®.

The low substitution bone graft, combined with a rapidly vascularizing membrane, helped to achieve the biological integration of the biomaterial.”

Dr. Avinash Bidra

The use of Geistlich Bio-Gide® and Geistlich Bio-Oss® mixed with autologous bone can lead to a successful outcome in single-stage implant placement with simultaneous contour augmentation.”

Dr. Avinash Bidra

Dr. Avinash Bidra

Dr. Bidra is a Board Certified Maxillofacial Prosthodontist and Director of the Prosthodontics Residency Program at UCONN School of Dental Medicine. He has extensive surgical experience and maintains a part-time private practice restricted to Implant Surgery and Prosthodontics in Meriden, CT. He has lectured at national and international meetings, as well as published extensively in international scientific journals. He has invented prosthetic components and is a co-inventor of a new implant design.

BIOBRIEF

Phenotype Conversion Using Geistlich Fibro-Gide® for Immediate Implants in the Esthetic Zone

Dr. Robert A. Levine

THE SITUATION

A healthy non-smoking 50-year-old female patient who desires a single tooth solution to replace a non-restorable tooth, #12. A root fracture at the level of the palatal post was diagnosed in a root canaled tooth. Maintaining esthetics of the adjacent teeth is important as they are also restored with single full coverage porcelain crowns. Lastly, treatment time reduction and a minimally invasive surgical technique are desired by the patient for reduced downtime and post-operative morbidity.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Patients Esthetic Expectations: Realistic
Facial Bone Wall Phenotype: High Risk (<1mm)
Esthetic Risk Profile (ERP) = Medium (summary of above)
watch video download pdf

THE APPROACH

A minimally invasive surgical removal of tooth #12 with maintenance of the buccal plate and leaving a 3mm buccal gap. The implant will be placed one mm below the level of the intact buccal plate with an anatomically correct surgical guide template to provide for a screw-retained solution. The gap will be filled with Geistlich Bio-Oss Collagen® to maintain the bone buccal to the implant, and a palate free approach utilizing Geistlich Fibro-Gide® for soft tissue thickening to accomplish “phenotype conversion.” The long-term surgical goal is >2-3mm thickness of both hard and soft tissue buccal to the implant.

Pre-operative assessment demonstrates minimal zone and thickness of buccal keratinized gingiva, with a medium periodontal phenotype.
Pre-operative CBCT with virtually planned implant placement. A thin buccal plate (<1mm) is measured. Good apical bone is noted for the placement of a Straumann® 12mmx4.1mm bone level tapered implant.
Minimally invasive removal of #12 using only a buccal approach mini-flap showing an intact buccal plate with immediate placement of the implant (1 mm below the intact buccal wall) in a screw-retained position. A 3mm buccal gap is measured and a 1.5mm palatal gap.
Both the buccal and palatal gaps have been packed with Geistlich Bio-Oss Collagen® hydrated with Gem 21S. It’s my preference to squeeze Geistlich Fbro-Gide® between thumb and forefinger, prior to placement. A dry-carved piece of Geistlich Fibro-Gide® is in position thinned approximately 2mm with beveling laterally and coronally with a new #15 blade.
Geistlich Fibro-Gide® in place facial to the intact buccal wall under a full thickness buccal approach mini-flap. Immediate contour management was completed using an Anatotemp® for a maxillary bicuspid tooth.
Suturing completed using 4-0PTFE and 5 -0 polypropylene non-resorbable sutures. Anticipated short-term 25% post-operative swelling is discussed with the patient.
3 months post-operative appointment showing a well-developed subgingival transition zone created with immediate contour management. A reverse torque test was completed, and the case proceeded to completion.
9 month post-operative view with final screw-retained crown in place. Good interproximal papilla healing is noted with thickening of the buccal periodontal phenotype compared with Fig. #1. (Restorative Therapy: Drew Shulman DMD, MAGD; Philadelphia, PA)

“High esthetic demands were the primary concern with this case. They were addressed with the diagnostic tools of clinical photos, a site specific CBCT to evaluate the buccal wall status, and summing the findings with patient expectations gathered using the Esthetic Risk Assessment (knee-to-knee; eye-to-eye) which is used along with our consent agreement to treatment.”

THE OUTCOME

Minimally invasive surgery for buccal wall maintenance, virtually planning the buccal gap and implant width, using a xenograft in the buccal gap with phenotype conversion using a volume stable collagen matrix in conjuction with immediate contour management, allows for the best chance for papillae fill interproximally and maintenance of the mid-buccal gingival margin long-term.

Virtual planning the implant width for a screw-retained prosthesis based on an intact buccal wall after extraction to allow for a buccal gap of >2mm to be grafted are important keys for esthetic success.”

Dr. Robert A. Levine

The importance of the ‘one-two punch’ of ROUTINE phenotype-conversion using Geistlich Fibro-Gide® in conjunction with bone grafting the >2mm buccal gap with Geistlich Bio-Oss Collagen® provides excellent buccal convex tissue maintenance long-term.”

Dr. Robert A. Levine

Dr. Robert A. Levine

Robert A. Levine DDS is a board-certified periodontist at the Pennsylvania Center for Dental Implants and Periodontics in Philadelphia. He is a Fellow of the International Team for Dental Implantology (ITI), College of Physicians in Philadelphia, International Society of Periodontal Plastic Surgeons and the Academy of Osseointegration. He has post-graduate periodontology and implantology teaching appointments at Temple University in Philadelphia, UNC in Chapel Hill and UIC in Chicago and has over 80 scientific publications.

BIOBRIEF

Horizontal Ridge Augmentation in the Posterior Mandible of a 90-Year-Old Female

Dr. Kim Rocky Mount Perio
Dr. John Kim

THE SITUATION

A 90-year-old female presented requesting dental implants be placed in the left mandibular posterior region. Her chief complaint was increased drooling and difficulty chewing on only one side. She lost her bridge one year prior to her visit and firmly stated that she did not want to wear a partial denture. The clinical exam and CBCT showed that there was a horizontal alveolar ridge deficiency that precluded the implants from being placed in a restoratively desirably position. Therefore, a horizontal ridge augmentation was done using multiple layers of Geistlich Bio-Gide® Compressed over a 1:1 ratio of autogenous bone and Geistlich Bio-Oss® xenograft.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: Very limited range of opening
watch video download pdf

THE APPROACH

The treatment goal was to gain adequate horizontal bone dimension to allow for prosthetically-driven implant placement. Guided bone regeneration was performed in which autogenous bone was mixed with Geistlich Bio-Oss® xenograft in a 1:1 ratio. PRF was used to create “sticky bone” and was covered by multiple layers of Geistlich Bio-Gide® Compressed. The membrane was stabilized with periosteal biting stabilizing sutures. Tension-free primary closure was achieved and the grafted site was allowed to heal for 8 months prior to the implant surgery for #19 and #20.

Pre-operative situation showing the horizontal ridge deficiency (left). Buccal bone concavity evident after full thickness flap elevation (middle). There is insufficient bone to place implants in an ideal restorative position (right).
It is important to locate the mental foramen. Intramarrow penetrations were done to allow for improved blood supply to the bone graft.
The clinical cocktail used for guided bone regeneration: 1) 50/50 mixture of autogenous bone chips, collected with Geistlich SafeScraper TWIST, and Geistlich Bio-Oss®, and 2) Geistlich Bio-Gide® Compressed 20 x 30 mm and 13 x 25 mm.
“Sticky bone”, created by combining PRF with the bone graft, adapted well to the site of the defect. Periosteal biting sutures were used for stabilization of the multiple layers of Geistlich Bio-Gide® Compressed and underlying bone graft.
Geistlich Bio-Gide® Compressed was carefully trimmed to be mindful of the mental nerve.
Tension-free primary closure achieved with horizontal mattress sutures and simple interrupted sutures.
Re-entry and CBCT scan at 8 months showing a significant increase in horizonal bone dimension.
Sufficient regenerated bone to allow for implant therapy (left). Implants #19 and #20 placed. Vital bone from guided bone regeneration as evidenced by the bleeding bone (middle). Tension-free primary closure achieved using 5-0 glycolon sutures.

“A predictable ridge augmentation procedure was needed to help our 90-year-old patient avoid having nutritional deficiencies due to lack of proper chewing ability and also to improve her quality of life.”

THE OUTCOME

The horizontal ridge augmentation procedure resulted in adequate bone for implant therapy as evidenced by the CBCT scan and re-entry surgery. With a sufficient quantity of good quality regenerated bone, implants for #19 and #20 were placed using a surgical guide based on a diagnostic wax up. Our 90-year-old patient is very happy to be able to chew efficiently again.

Stabilizing Geistlich Bio-Gide® Compressed and the underlying particulate graft allows for predictable ridge augmentation across multiple edentulous sites.”

Dr. John Kim
Dr. Kim Rocky Mount Perio

Dr. John Kim

Dr. Kim, originally from Fairfax, VA, received his DMD from Harvard School of Dental Medicine. He completed his residency and received his M.S. in Periodontics at UNC School of Dentistry at Chapel Hill. Dr. Kim is a Diplomate of the American Board of Periodontology and actively speaks as an expert on guided bone regeneration, implant therapy, soft tissue grafting, and managing complications domestically and internationally. He is also an adjunct faculty at UNC Adams School of Dentistry.

BIOBRIEF

Ridge Augmentation and Delayed Implant Placement on an Upper Lateral Incisor

Dr. Daniele Cardaropoli

THE SITUATION

An adult female patient presented with an endodontic/prosthetic failure on the maxillary left lateral incisor. The patient‘s request was to have a definitive implant-supported single crown. The clinical situation revealed recession of the free gingival margin, while the CBCT evaluation showed the missing buccal bone plate, which contra-indicated an immediate implant placement. The treatment plan included a staged approach with a ridge augmentation procedure at the time of tooth extraction, in order to recreate the buccal bone plate and reduce the gingival recession. By moving the free gingival margin, keratinized tissue was gained through an open-healing approach.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: The compromised soft-tissue created a high risk situation for esthetic failure and the need for a staged approach, in order to coronalize the free gingival margin.
watch video download pdf

THE APPROACH

The treatment goals were to improve the soft-tissue levels and regenerate the buccal bone plate. After performing a flapless extraction procedure, a specifically designed resorbable bilayer collagen membrane, Geistlich Bio-Gide® Shape, was inserted into the socket with the long wing in contact with the buccal surface and the smooth, compact upper layer facing outward. The alveolus was then grafted with Geistlich Bio-Oss Collagen®. The three smaller wings of the membrane were folded on top of the graft material and sutured to the surrounding soft-tissue, allowing for open-healing.

Baseline: endodontic/prosthetic failure on the maxillary left lateral incisor.
The cone beam image shows the missing bony buccal plate.
Clinical situation following a minimally invasive, flapless extraction approach.
Geistlich Bio-Gide® Shape is inserted into the socket, with the long wing in contact with the buccal surface in order to recreate the cortical bone.
The socket is carefully grafted with Geistlich Bio-Oss Collagen®.
The three remaining wings of Geistlich Bio-Gide® Shape are folded over the bone graft and gently secured inside the gingival sulcus. The membrane is then sutured to the surrounding soft-tissue with six single-interrupted sutures.
Implant placement can be planned 4 months after the ridge augmentation procedure.
4 weeks post-operative view with an open-healing approach, showing a positive soft-tissue response.
After flap elevation at 4 months, the new buccal bone plate can be detected, together with a completely filled alveolus. An implant can now be easily inserted into a fully healed ridge.
Clinical image of the final ceramic crown. An esthetic improvement can be noted when compared with the baseline image. The free gingival margin has been shifted in a coronal direction.

“The patient had a failing crown with compromised soft tissue and requested a single crown rehabilitation with improved esthetics.”

THE OUTCOME

This case demonstrates how it is possible to improve the clinical and esthetic situation that was presented at baseline. Despite missing the buccal bone plate and the recession of the free gingival margin, the ridge augmentation procedure performed with the combination of Geistlich Bio-Gide® Shape and Geistlich Bio-Oss Collagen® was able to create a positive volume of the ridge, allowing for a prosthetically guided implant placement.

Clinical image of the final ceramic crown

Ridge augmentation combining the use of Geistlich Bio-Oss Collagen® and Geistlich Bio-Gide® Shape is a predictable minimally invasive regenerative procedure able to create sufficient ridge volume suitable for prosthetically driven implant placement.”

Dr. Daniele Cardaropoli

Prosthetically guided implant placement can be planned 4 months after the ridge augmentation procedure. The specifically designed Geistlich Bio-Gide® Shape was able to protect the Geistlich Bio-Oss Collagen®, not only in the coronal position but also aided in recreating the missing buccal bone.”

Dr. Daniele Cardaropoli

The use of the Cardaropoli Compactor instrument helped to carefully adapt Geistlich Bio-Gide® Shape onto the inner buccal surface of the alveolus and to properly compact Geistlich Bio-Oss Collagen® inside the socket.”

Dr. Daniele Cardaropoli

Dr. Daniele Cardaropoli

Periodontist – PRoED, Institute for Professional Education in Dentistry, Torino

Doctor of Dentistry and Certificate in Periodontology from the University of Torino, Italy.
Active member of the Italian Society of Periodontology, European Federation of Periodontology, Italian Academy of osseointegration and Academy of osseointegration. International member of the American Academy of Periodontology. Scientific Director of Institute for Professional Education in Dentistry (PRoED), Torino. Member of the Editorial Board of The International Journal of Periodontics and Restorative Dentistry. Private practice in Torino, Italy.

BIOBRIEF

Immediate Mandibular Molar Transition

Dr. Peter Hunt

THE SITUATION

The case here is typical enough, a failing mandibular molar with a vertical sub-osseous fracture. Traditionally, the replacement process can take three or more surgical exposures (extraction and regeneration), (implant placement), (second stage exposure) and more than a year of therapy.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Immediate molar replacement requires atraumatic removal of the fractured tooth, careful socket debridement and development of a channel for an ideally positioned implant. The implant then needs to be placed down in the bone channel with the implant platform positioned just below the socket walls. It needs to be stable. Channel deficiency augmentation is achieved with Geistlich Bio-Oss Collagen® which is covered with a collagen matrix, Geistlich Mucograft® with the edges tucked under the gingival margins and sealed over with tissue glue.

Initial Situation: a failing mandibular molar with a vertical sub-osseous fracture.
A pre-operative radiograph and CBCT showing the cross-section of the involved tooth.
An implant site was developed by placing a pilot drill down the mesial root space, then uprighting it. This was continued up through the drill sequence. The mesial radicular septum is moved in the process.
A Camlog® 5.0 x 11 mm implant was placed with the platform set just down below the bone height of the socket walls.
After placing a 4.0 mm height cylindrical gingiva former in the implant, 250 mg of Geistlich Bio-Oss Collagen® was packed down in the socket around the implant.
Geistlich Mucograft® was adapted to the region then tucked down under the gingival margin.
The gingival margins were adapted and closed together with 4.0 teflon sutures (Cytoplast™, Osteogenics). The region was then covered with Glustich – PeriAcryl®90 Oral Tissue Adhesive.
After 3 months of healing, the top of the gingiva former is exposed and the situation is ready for Emergence Profile Development. This is quite standard.
4 months later following Emergence Profile Development.
An occlusal view of the final one-piece, screw-retained zirconia crown restoration based on a Camlog® Titanium Base Abutment.

“The patient desires an implant placement for a fractured mandibular molar, as fast as possible.”

– Dr. Peter Hunt

THE OUTCOME

This single stage replacement protocol has proven to be simple, safe and highly effective providing the socket is fully degranulated and the implant is stable and not loaded in the early healing stages. It works well when a gingiva former is immediately placed into the implant instead of a cover screw, Geistlich Bio-Oss Collagen® is packed around the implant to fill the residual socket, then covered with a Geistlich Mucograft® and sutured. There is no need for flap advancement to cover over the socket.

This procedure really just merges a socket regeneration procedure with implant placement. It’s a simple and effective procedure which has now become quite standard for us.”

Dr. Peter Hunt

Dr. Peter Hunt

After graduate training on an Annenberg Fellowship at the University of Pennsylvania, dr. hunt helped start up the University of the Western Cape dental School in Cape Town, South Africa. he returned to the University of Pennsylvania where in time he became Clinical Professor of Periodontics. later he helped start up Nova Southeastern‘s dental School where he was Professor of Restorative dentistry, Post Graduate director and director of Implantology. he has had a private practice in Philadelphia focusing on implant and rehabilitation dentistry since 1981.

BIOBRIEF

Ramal Bone Graft for Congenitally Missing Maxillary Lateral Incisor

Dr. Richard E. Bauer, III

THE SITUATION

An 18-year-old female presented with a congenitally missing tooth #10. The patient previously sought care by another provider and had undergone guided bone regeneration with allograft and subsequent implant placement with additional grafting at the time of implant placement. The implant ultimately failed and was removed prior to my initial consultation. An examination revealed maximal incisal opening, within normal limits, missing #10 with 6 mm ridge width. In addition there was a significant palpable cleft-like depression on the facial aspect of the ridge, adequate attached tissue but reduced vertical height in relation to adjacent dentition and attached tissue. Previous surgeries resulted in extensive fibrous tissue with scarring at site #10. Plan: A ramal bone graft is indicated at the congenitally missing site #10 with Geistlich Bio-Oss® and Geistlich Mucograft® matrix utilized for ridge augmentation prior to secondary implant placement.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

The goals for this patient are to reconstruct the osseous foundation and provide a matrix for improvement with the overlying soft tissue. Specifically, a coordinated multidisciplinary plan was established with the restoring dentist, periodontist and oral surgeon. A plan for idealized anterior cosmetic prosthetic restoration was established. Sequencing of treatment was established. Surgical phase one included a ramal bone graft to site #10 and Essix type temporary prosthesis for immediate post-operative phase followed by a temporary Maryland bridge. Surgical phase two included implant placement and simultaneous crown lengthening and osteoplasty. This stage was done with immediate provisionalization.

A flap has been raised and reveals a significant facial and palatal defect at congenitally missing site #10.
Harvested ramal graft. Slightly over-sized to allow for mitering and harvest of particulate autograft with a bone trap on the suction.
Onlay graft now secured with two fixation screws (Stryker) with a lag screw technique. Geistlich Bio-Oss Collagen® has been placed on the palatal aspect of site #10
Combination of a fixated onlay graft with Geistlich Bio-Oss®/autograft particulate graft at the periphery and over the facial plate of the adjacent dentition
Geistlich Mucograft® matrix placed over facial augmentation of the adjacent dentition and ridge crest of the augmented site
Closure following ramal grafting and Geistlich Mucograft®matrix application
Implant placement with static guide and dental implant hand driver
Implant placement with slight subcrestal placement of the platform just prior to osteoplasty by the periodontist.

“This is a young patient with a congenitally missing incisor that has high esthetic concerns and has had multiple failed surgical attempts that is now presenting for definitive management.”

THE OUTCOME

This case was dependent upon adequate hard-tissue reconstruction combined with soft-tissue manipulation to eliminate scar tissue and provide esthetic recontouring. Obtaining an adequate autogenous graft combined with Geistlich Bio-Oss® at the periphery of the onlay graft is essential for anterior-posterior and vertical augmentation. Utilizing a Geistlich Mucograft® matrix at the ridge crest to help contain the particulate graft and improve the soft-tissue profile for subsequent immediate provisionalization and re-contouring of the surrounding soft tissue played a significant role in the esthetic success.

Immediate provisional in place two days after implant placement and osteoplasty. There has been significant gain in bony architecture and development of soft-tissue contours at a site that was extremely deficient of structure to begin with.”

Dr. Richard E. Bauer, III

Dr. Richard E. Bauer, III

Oral and Maxillofacial Surgeon – University of Pittsburgh

Richard E. Bauer, III, DMD, MD is a graduate of the University of Pittsburgh Schools of Dental Medicine and Medicine. Dr. Bauer completed his residency training in Oral and Maxillofacial Surgery at the University of Pittsburgh Medical Center. Dr. Bauer has served on multiple committees for the American Association of Oral and Maxillofacial Surgery (AAOMS). He is a full-time faculty member and Residency Program Director at the University of Pittsburgh in the department of Oral and Maxillofacial Surgery and his practice is focused on dental implants and corrective jaw surgery. He has been active in research with focus on bone regeneration and virtual applications for computer assisted planning and surgery.

WEBINAR

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge width for implant placement
  • Autologous bone is subject to resorption and may lead to loss of volume

AIM/APPROACH:

  • Ridge Split procedure in combination with Geistlich Bio-Oss® and Geistlich Bio-Gide® for horizontal augmentation
  • Preservation of the alveolar ridge volume

CLINICAL CASE

CLINICAL CASE