BIOBRIEF

Lateral and Vertical Bone Regeneration with Simultaneous Soft Tissue Augmentation

Arnd Lohmann, MSc

THE SITUATION

After extraction of the periodontally damaged tooth #20 the preoperative Cone-Beam Computed Tomography (CBCT) imaging shows reduced vertical bone volume in the area of tooth #s 18 – 20. A lateral and vertical bone  regeneration was necessary.

The goal of treatment was a late implant placement after bone regeneration and creation of stable periimplant soft tissue for long-term implant preservation.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune systemLight smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Additional Risk Factors: Roots were divergent, and intra-radicular bone (septal bone) was excellent, with more than 5 mm of remaining apical bone to achieve optimal primary stability.

THE APPROACH

A customized bone regeneration procedure utilizing Yxoss CBR®. Followed by coverage of the graft with Geistlich Bio-Gide® for the purpose of Guided Bone Regeneration (GBR). Soft tissue thickening using Geistlich Fibro-Gide®. Delayed implantation into the augmented tissue. A vestibuloplasty with Geistlich Mucograft® for the regeneration of keratinized mucosa.

Baseline situation and planning: vertical bone deficit of 5.29mm in section 18-20.
Central incision in the keratinized mucosa and perforated cortical bone
Yxoss CBR® filled with a 50:50 mix of autologous bone and Geistlich Bio-Oss®. Coverage of the titanium scaffold with Geistlich Bio-Gide®
Geistlich Fibro-Gide® is tailored to the defect and a tension-free suture is done.
4 months after augmentation shows the bone situation after removal of the titanium scaffold and insertion of implants. Autologous bone chips are applied on top of the implants. Occlusal view of the mucosa level after implantation and wound closure.
6 weeks after implantation and 5 1/2 months after augmentation. The mucosa is prepared apically; the preparation reaches the periosteum apically. The recipient site is fully surrounded by keratinized mucosa. Geistlich Mucograft® is sutured into the area.
6 months after regeneration shows about 5mm of vertical bone regeneration. Panoram ic X-Ray after implant placement shows clearly recognizable mucosa shadows.
One year after augmentation shows the dental prosthesis inserted occlusally.

“Using the Geistlich Fibro-Gide® matrix enabled concurrent augmentation of hard
and soft tissues without any postoperative complications. At the same time, the soft
tissue thickening facilitated floor of the mouth surgery and vestibuloplasty.”

— Arnd Lohmann, MSc

THE OUTCOME

Treatment resulted in approximately 5 mm of vertical bone regeneration. The potential occurrence of a dehiscence associated with a wound opening and exposure of Yxoss CBR® was able to be prevented with Geistlich Fibro-Gide®.

On one hand, the quality of the peri-implant soft tissue was improved by the
soft tissue thickening with Geistlich Fibro‑Gide® and, on the other, by increasing the width of keratinized mucosa with Geistlich Mucograft®. The treatment method chosen resulted in a reduced invasiveness and morbidity by avoiding a donor site for sourcing a transplant.

One year after augmentation shows the dental prosthesis inserted occlusally.

Implant therapy should restore the natural anatomical structures as closely as possible in order to avoid subsequent peri-implant problems.”

Arnd Lohmann, MSc

Arnd Lohmann, MSc

Dr. Arnd Lohmann is a recognized specialist in implantology and periodontology. He earned his dental license in Hamburg in 2002, completed his doctorate in 2003, and has been a partner at a private practice in Bremen since then.

With a Master of Science in Implantology (2007), he specializes in dental implantology and bone augmentation. He is an active speaker at national and international congresses, leads the Bremen study group of the German Society of Oral Implantology (DGOI), and is a member of DGOI, DGZI, and DGI. His practice is equipped with state-of-the-art technology, ensuring high-quality patient care.

BIOBRIEF

Mandibular Ridge Augmentation Using Customized Titanium Mesh

Shaun R. Young, DMD

THE SITUATION

A 60-year-old healthy male presented with a failing lower left bridge. Due to a long history of missing teeth, he had a significantly atrophic mandibular ridge. We decided to use a customized titanium mesh to achieve the necessary vertical and horizontal bone augmentation for dental implant rehabilitation.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune systemLight smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

THE APPROACH

The goal of this procedure was to regenerate sufficient bone to place restoratively driven dental implants. Due to the horizontal and vertical ridge deficiency, we used a customized titanium mesh to predictably achieve this outcome.


Autogenous bone collected with SafeScraper Twist and Geistlich Bio-Oss® filled the Yxoss CBR® Protect and a Geistlich Bio-Gide® collagen membrane covered the mesh.

.

Pre-op mandibular ridge after the extraction of teeth #17 and #20. Note the significant horizontal ridge deficiency.
Yxoss CBR® Protect Customized Bone Regeneration Titanium Mesh in place, secured with two Stryker screws, 1.2 mm in diameter and 6 mm in length.
Note the excellent adaptation of the Yxoss CBR® Protect and that the edges are apical to the adjacent bony sockets.
Geistlich Bio-Gide® (resorbable collagen membrane) draped over the Yxoss CBR® Protect to separate osteoblasts from fibroblasts.
Implants restored with single-unit crowns.
Six months post-ridge augmentation.
Guide pins in place for implants #19, #20, and #21, with adequate ridge height and width.
Screw-retained final implant crowns with healthy keratinized tissue on the facial side.

“Success in these cases primarily depends on proper mesh design and careful handling of soft tissue to ensure zero-tension primary closure.”

— Shaun R. Young, DMD

THE OUTCOME

A left mandibular ridge deficiency was corrected using a Yxoss CBR® Protect Customized Bone Regeneration Titanium Mesh, designed from the patient’s CBCT scan. 

Screw-retained final implant crowns with healthy keratinized tissue on the facial side

Guided bone regeneration using Yxoss CBR® Protect to correct vertical and horizontal mandibular ridge deficiencies is a predictable procedure.”

Shaun R. Young, DMD

Shaun R. Young, DMD

Dr. Shaun Young, an Oral and Maxillofacial Surgeon based in Tampa, Florida, specializes in complex ridge augmentation, immediate implants, and All-on-X full arch rehabilitation. He earned his Doctor of Dental Medicine degree from the University of Florida and completed his OMFS residency at Emory University in Atlanta, Georgia, where he served as Administrative Chief Resident. Dr. Young brings his expertise to a full-scope group practice, serving Tampa, Clearwater, and New Port Richey, Florida.

BIOBRIEF

Mandibular Alveolar Ridge Split with Delayed Implant Placement

Gregory A. Santarelli, DDS

THE SITUATION

A healthy (ASA 1) non-smoker 63-year-old female presented to my office with Kennedy Class II partial edentulism in the mandibular right posterior quadrant for several years.  She denied removable options and wanted dental implants to individually replace her missing teeth.  The clinical and radiographic evaluation revealed atrophic mandibular bone height and width at site #’s 29, 30 & 31.  The edentulous site required engineering prior to the placement of conventional dental implants and prosthetics.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system/Non-smoker Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

THE APPROACH

The goal is to provide adequate soft and hard tissue at edentulous site #’s 29, 30 & 31 in order to place dental implants and restore a stable balanced occlusion.

Initial panoramic radiograph.
Atrophic edentulous alveolar ridge.
Alveolar ridge split with Geistlich Bio-Oss® graft in place (subsequently applied Geistlich Mucograft®).
6 months post grafting with Geistlich Bio-Oss® and Geistlich Mucograft®.
Implant osteotomies with adequate alveolar width.
Implants in tooth positions 29, 30 and 31.
Panoramic radiograph of implants.
Final restorations.

“The hard and soft tissue of the edentulous posterior mandible were inadequate to rehabilitate with dental implants.”

— Dr. Gregory Santarelli

THE OUTCOME

The patient summarized this challenging case very well – “I never imagined I would have fixed teeth again.” Geistlich Bio-Oss® and Geistlich Mucograft®  allowed for retention of the hard and soft tissue volume to achieve our final result and for maintenance of the final prosthesis.

Final restorations.

Careful patient selection, treatment planning and operative efficiency were used to provide a previously non-functional segment with fixed stable dental implant prosthetics and a balanced occlusion.”

Dr. Gregory Santarelli

Precise osteotomies along with the use of Geistlich Bio-Oss® and Geistlich Mucograft® provide adequate bone volume for dental implants.”

Dr. Gregory Santarelli

Gregory A. Santarelli, DDS

Dr. Santarelli earned his DDS degree in 1998 from the University School of Dentistry, Milwaukee, WI, after graduating with his B.S. in Biology from Arizona State University (Tempe, AZ). In 1999, he completed his General Practice Residency at the University of Iowa Hospital and Clinics, and went on to an Oral & Maxillofacial Surgery Internship at the Medical College of Virginia (Richmond, VA) as well as an Oral & Maxillofacial Surgery Residency Program, Christiana Care Health System (Wilmington, DE).

After completing his formal training in 2004, Dr. Santarelli’s work experience includes the Bankor Hospital for Children, Cambodia (2003), Adjunct Clinical Professor, University of Marquette, School of Dentistry, Department of Oral Sugery, Marquette, WI (2005), and Oral Surgery Associates of Milwaukee, Milwaukee, WI (2004-2005). He now maintains a private practice in Kenosha, WI with his partner Dr. Deno Tiboris.

Dr. Santarelli performs numerous hard/soft tissue regeneration surgeries in preparation for dental implants and is actively involved in clinical research with The McGuire Institute (iMc).

BIOBRIEF

Combined Horizontal and Vertical Regeneration Using a CAD-CAM Titanium Scaffold

Dr. Gian Maria Ragucci
Prof. Federico Hernández-Alfaro

THE SITUATION

A 54-year-old, systematically healthy male patient (*ASA) came to our attention presenting with partial edentulism in the lower jaw and requiring a fixed and esthetic rehabilitation, refusing any removable solution. The clinical and radiographic evaluation resulted in significant bone atrophy both in the vertical and horizontal components; which makes it impossible to place both conventional implants and short or narrow implants.

*American Society of Anesthesiologists Physical Status Classification System

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Solving the case was developed in two steps: first bone reconstruction to restore the ideal anatomy, second positioning of the prosthetically guided implants. An individualized regeneration technique was chosen using a CAD-CAM titanium scaffold (Yxoss CBR®) in conjunction with a mix of 60% autogenous bone and 40% Geistlich Bio-Oss®, covered by Geistlich Bio-Gide®. At 9 months, the titanium scaffold was easily removed and 3 prosthetically guided implants were placed, completely surrounded by bone. At 12 months, a free gingival graft was performed to re-establish the missing amount of keratinized mucosa. Finally, at 16 months, the final rehabilitation was carried out with a fixed prosthesis on implants.

Panoramic radiographic view of the defect
Horizontal and vertical augmentation step by step
Baseline situation (left) and 9-month follow-up (right)
Scaffold removal and implant placement step by step
Soft-tissue management with free gingival graft
Final restoration
Periapical radiographs of implants and prosthesis
Final restoration at 16 months

“Combined horizontal and vertical bone augmentation utilizing a CAD CAM titanium scaffold can be achieved with less surgical time and less complications.”

THE OUTCOME

The final resolution of the case was very satisfactory. There were no complications during all the procedures performed. The Yxoss CBR® allowed for easier reconstructive surgery and a significant reduction in surgical times, thanks to the precise dimensions of the scaffold. This resulted in a favorable post- operative situation for the patient and complications were prevented.

Final restoration at 16 months

Vertical bone reconstruction combining the use of Yxoss CBR®, Geistlich Bio-Oss® and Geistlich Bio-Gide® allows a predictable regenerative procedure that is able to create sufficient bone volume suitable for prosthetically guided implant placement.”

Dr. Gian Maria Ragucci

The use of CAD-CAM Titanium scaffold Yxoss CBR® allows an ideal bone regeneration and a faster and easier surgery.”

Dr. Gian Maria Ragucci

Dr. Gian Maria Ragucci

Universitat Internacional de Catalunya (UIC), Barcelona Dental degree at Universidad Europea de Madrid 2015
International Master in oral surgery at UIC, Barcelona 2018
PhD student at UIC, Barcelona 2018
EAO Certification program in implant dentistry 2018
EAO European prize in implant dentistry 2019

Prof. Federico Hernández-Alfaro

Full professor & Chairman, Department of Oral and Maxillofacial Surgery, UIC, Barcelona
Institute of Maxillofacial Surgery, Teknon Medical Center, Barcelona

BIOBRIEF

Prosthetically Guided Regeneration (PGR) in the Posterior Maxilla

Paolo Casentini, DDS

THE SITUATION

The 60-year-old female patient’s chief complaint was represented by unsatisfactory esthetics and function, related to loss of multiple maxillary teeth. Her request focused on improving esthetics and function by means of a fixed reconstruction.

The patient presented five residual anterior maxillary teeth (from 6 to 10) that could be maintained. After preliminary periodontal diagnosis and treatment, specific diagnostic steps for implant treatment demonstrated inadequate bone volume for implant placement.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system
Non-smoker 
Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
watch video download pdf

THE APPROACH

Bi-lateral sinus lift with Geistlich Bio-Oss Pen® and horizontal bone augmentation with a 1:1 mix of autogenous bone and Geistlich Bio-Oss® were performed six months prior to implant placement, following a Prosthetically Guided Regenerative (PGR) approach. The augmented sites were protected with Geistlich Bio-Gide® stabilized with titanium pins. The template utilized for radiographic diagnosis and GBR was then used to guide the implants’ placement.

Baseline full-mouth intra-oral view: the residual maxillary teeth were preliminarily reconstructed with a composite mock-up. The horizontal atrophy of the posterior areas of the maxilla is clearly visible.
The cone beam, realized with a radio-opaque diagnostic template, shows inadequate bone volume for implant placement in all the analyzed sites.
The use of the diagnostic template during the augmentation procedure helps to highlight the presence of bone defects in relationship to the restorative plan and future position of implants.
Large Geistlich Bio-Oss® particles are directly applied inside the sinus with Geistlich Bio-Oss Pen®.
The Geistlich Bio-Gide®, fixed with titanium pins is used to protect and stabilize the augmented site. As the surgical template shows, the bone augmentation is based on the future restorative project following the principle of PGR.
The same surgical procedure is performed on the left posterior side of the maxilla.
Cone-beam 6 months after surgery and prior to implant placement. The relationship between the template used for diagnosis and the bone crest reveals adequate bone volume to place implants in the correct prosthetically driven position.
Implant placement was guided by the same template utilized for diagnosis and bone augmentation.
Final view of the prosthetic reconstruction demonstrates bio-mimetic integration of implant-supported prostheses and ceramic veneers bonded to residual natural teeth.
The panoramic radiograph shows adequate integration of the implants and absence of peri-implant bone resorption.

Using a diagnostic template during the GBR procedure helps to highlight the presence of bone defects in relationship to the restorative plan and future position of implants.

THE OUTCOME

After a healing period of six months, adequate bone volume was achieved for the placement of five implants. Geistlich Fibro-Gide® was also used to optimize soft tissue volume at the buccal aspect of implants.

Implants were early loaded with a temporary screw-retained fixed prostheses six weeks after placement. The final prosthetic reconstruction included ceramic veneers of the frontal residual teeth and zirconium-ceramic screw-retained fixed prostheses on implants.

Patient satisfaction is my driver for excellence. That’s why I always apply the Prosthetically Guided Regeneration principle together with Geistlich Biomaterials: proven and predictable long-term patient success.”

Paolo Casentini, DDS

Paolo Casentini, DDS

Graduated in Dentistry at the University of Milan, Fellow and Past Chairman of the Italian section of ITI, Active member Italian Academy of Osseointegration. Co-author of 10 textbooks including ITI Treatment Guide volume 4, translated in eight languages, and “Pink Esthetic and Soft Tissues in Implant Dentistry” translated in five languages. His field of interest is advanced implantology in complex and esthetically demanding cases. He has extensively lectured in more than 40 countries.

BIOBRIEF

Avoiding Post-Implant Placement and Long Term Crestal Bone Resorption by Thickening Vertical Soft Tissue

Tamir Wardany, D.D.S.

THE SITUATION

Our patient is a 60-year-old caucasian male that had just finished a large ridge augmentation in the area of #4 and #5. We used the sausage technique for the ridge augmentation and yielded excellent bone volume in this area. However, as we began the 2nd stage implant placement procedure, we noticed, as is frequently seen following a large ridge augmentation, very thin vertical soft tissue over the crest of the bone. We know that inadequate soft tissue thickness will lead to compromised vasculature and transfer of oxygen and nutrients to the bone which can absolutely lead to a loss of crestal bone surrounding the implants.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect

Note: Bone was augmented prior to this case report due to a severe horizontal defect.
watch video download pdf

THE APPROACH

Our goal here is to create increased vertical soft tissue thickness over the crest of the implant site. Following implant placement and placement of the cover screws, we used Geistlich Fibro-Gide® over the implants and then layed it over the crest and buccal aspect. Following the placement of Geistlich Fibro-Gide®, we gently released the full thickness flap so that we can achieve tension-free primary closure over the site.

6 months following horizontal ridge augmentation, using Dr. Urban’s sausage technique, we re-entered the site for implant placement using a full thickness flap with no vertical incisions, to not disrupt collateral blood supply. There is excellent bone volume, but a very thin vertical soft tissue volume over the crest of the implant site.
Straumann implants are placed in sites #4 and #5 to a 25Ncm torque value with no issues and the cover screws were placed.
Geistlich Fibro-Gide® is placed crestally over the implants and draped to the buccal and slightly towards the lingual. Geistlich Fibro-Gide® was trimmed slightly to minimize the thickness of the material.
The flap was released so that we can achieve tension-free primary closure over the implant and the Geistlich Fibro-Gide® soft tissue augmentation site.
Following an 8 week healing period, we make a crestal incision and lay a conservative full-thickness flap to uncover the implants. We observe a 3-4 mm increase in verticle soft tissue thickness over the implant site.
We allow 3 weeks following the initial uncovering and can now see beautiful soft tissue architecture surrounding the implants.
Prior to the restorative process we see the pre-restorative radiograph with the healing abutments in place and we can also observe excellent crestal bone levels around the implants.
1 year follow-up. The restorative dentist opted to splint the crowns together. The patient did not want implants posterior to this area and he did not want any sinus augmentation as he had a history of sinus issues.

The use of Geistlich Fibro-Gide® is a wonderful alternative to using a connective tissue graft to thicken vertical soft tissue, which will help minimize crestal bone loss around implants.

THE OUTCOME

The soft tissue that will now surround the implant site is thick and healthy due to the use of Geistlich Fibro-Gide® at the time of implant placement. This is a simple technique and only requires a minimal amount of flap release to achieve tension-free primary closure over the site. The results are phenomenal and will be beneficial for the stability of the crestal bone surrounding the implants for years to come.

1-year follow-up. The restorative dentist opted to splint the crowns together. The patient did not want implants posterior to this area, and he did not want any sinus augmentation as he had a history of sinus issues.

Thin vertical soft tissue over the implant site following ridge augmentation is one of the key factors which may lead to crestal bone loss around the implants that will be placed.

Tamir Wardany, D.D.S.

I find the Mini-Me Periosteal to be my most versatile instrument for all my hard and soft tissue cases. I always have this instrument out on my surgical tray.

Tamir Wardany, D.D.S.

Beginning with thin soft tissue, we were able to achieve very thick and healthy vertical soft tissue over the implants, which will improve blood flow to the bone and minimize crestal bone loss in future.

Tamir Wardany, D.D.S.

Tamir Wardany, D.D.S.

Dr. Wardany is a graduate of Meharry Medical College School of Dentistry in Nashville, TN. After completion of a dental implant fellowship through State University of New York Stonybrook, he continues to spend extensive time in Europe training under Dr. Istvan Urban in the field of advanced bone and soft tissue regeneration.

He is a Diplomate of the American Board of Implantology, and lectures extensively on the topic of bone regeneration. He maintains a referral based surgical implant practice in San Francisco and Sacramento, California.

BIOBRIEF

3D Bone Augmentation Using Customized Titanium Mesh in Conjunction with Autogenous Bone and Bovine Bone Material Granules

Dr. Matteo Chiapasco
Matteo Chiapasco, D.D.S., M.D.
Grazia Tommasato, D.D.S., M.S.C.

THE SITUATION

A 75-year-old systemically healthy female came to our attention presenting with absent mandibular second bicuspids and molars and requiring a fixed rehabilitation supported by implants as she refused a removable solution. The clinical and radiographic evaluation showed a relevant vertical and horizontal bone atrophy of such an extent that short or narrow implants were not considered a reliable option. The patient smoked <10 cigarettes per day.

THE RISK PROFILE

Low RiskMedium RiskHigh Risk
Patient’s healthIntact immune system Light smokerImpaired immune system 
Patient’s esthetic requirementsLowMediumHigh
Height of smile lineLowMediumHigh
Gingival biotypeThick – “low scalloped”Medium – “medium scalloped”Thin – “high scalloped”
Shape of dental crownsRectangularTriangular
Infection at implant sightNoneChronicAcute
Bone height at adjacent tooth site≤ 5 mm from contact point5.5 – 6.5 mm from contact point≥ 7 mm from contact point
Restorative status of adjacent toothIntactRestored
Width of tooth gap1 tooth (≥ 7 mm)1 tooth (≤ 7 mm)2 teeth or more
Soft-tissue anatomyIntactCompromised
Bone anatomy of the alveolar ridgeNo defectHorizontal defectVertical defect
Note: Yxoss CBR® by ReOss® Screws 5mm – MCbio (G-fix system)
watch video download pdf

THE APPROACH

The main goal was to obtain a horizontal and vertical reconstruction of the deficient alveolar bone in order to allow safe and prosthetically-guided implant placement. Reconstruction was obtained by means of a customized titanium mesh, Yxoss CBR®, in combination with a mixture of autologous bone chips harvested from the mandibular ramus and bovine bone mineral, Geistlich Bio-Oss®.

Panoramic radiograph of initial situation showing the atrophic mandibular areas.
The final Yxoss CBR® ready for use.
The customized Ti-mesh is filled with the autologous bone chips mixed with Geistlich Bio-Oss® granules in a 50:50 ratio.
Intra-operative view at the end of the reconstruction showing the bone augmentation: the customized mesh was stabilized with 2 fixation screws.
A Geistlich Bio-Gide® membrane is used to cover the customized mesh in order to increase the barrier effect.
Intra-operative view after primary closure of the surgical wound.
Panoramic radiograph after surgery.
Clinical control 3 months later showing favorable healing of the soft tissue and correction of the defect.


The 3-dimensional reproduction of the left edentulous area permits the production of a precise and customized Ti-mesh.

THE OUTCOME

Post-operative recovery of this patient was uneventful, no complications such as dehiscence or late exposure of the customized mesh, with complete correction of the initial defect. The Yxoss CBR® allowed an easy and faster reconstruction thanks to the precision of the prefabricated mesh filled with autologous chips, Geistlich Bio-Oss® and Geistlich Bio-Gide®.

While it is important to be an expert in guided bone regeneration, this technique reduces the difficulties to less than one-half and is predictable, effective, and precise.

Matteo Chiapasco, D.D.S., M.D.

GBR combining the use of Geistlich Bio-Oss®, autologous bone chips taken from the mandibular ramus associated with a customized Yxoss CBR®, covered with a Geistlich Bio-Gide®, is a predictable regenerative procedure allowing for the creation of an adequate volume suitable for a prosthetically-guided implant placement with optimization of the final restoration.

Matteo Chiapasco, D.D.S., M.D.
Dr. Matteo Chiapasco

Matteo Chiapasco, D.D.S., M.D.

Graduated in Medicine and specialized in Maxillofacial Surgery at the University of Milan, Italy. Professor, Unit of Oral Surgery, University of Milan; Associate Professor, Loma Linda University, Los Angeles, California, USA.

Grazia Tommasato, D.D.S., M.S.C.

Graduated in Dentistry in 2013, specialized in Oral Surgery at the University of Milan magna cum laude. PhD student and a medical consultant of the Clinical Unit of Oral Surgery (“G. Vogel” Clinic, Milan).

WEBINAR

CLINICAL CASE

CLINICAL SITUATION:

A 60-year-old female presented to the periodontics clinic at UTHSA for implant placement at sites #18 and #19. Upon clinical and radiographic examinations, the lower left edentulous ridge was diagnosed as a Siebert class III due to the presence of bucco-lingual and apico-coronal tissue defects. The treatment proposed included soft tissue grafting for increase of keratinized tissue followed by ridge augmentation using Yxoss CBR®mesh and a mix of autograft, vallos fibers, and platelet-rich plasma (PRP)

OUTCOME:

The vallos fibers combined with autogenous bone and the PRP created a stable fibrin bone graft that could be easily molded and contained within the mesh. Hydration with PRP was progressive until the graft reached the desired consistency. Wound healing following ridge augmentation was uneventful. There were no signs of infection or membrane exposure at the site. Mesh removal and implant placement is planned at 6-months following ridge augmentation.

CLINICAL CASE

CLINICAL CHALLENGE:

  • The planning of the patient’s case takes local and general patient-specific risk factors into consideration according to the principles of backward planning for implant positioning.

AIM/APPROACH:

  • Highlights step-by-step the important procedures to regenerate the bone (horizontal and vertical) with the 3-D printing technology, Yxoss CBR®.

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge height for implant placement and proximity to the alveolar nerve
  • Autologous bone harvesting is associated with patient discomfort

AIM/APPROACH:

  • Interpositional grafting with Geistlich Bio-Oss® Block for vertical augmentation
  • Alveolar ridge volume preservation and minimizing patient morbidity

CLINICAL CASE

CLINICAL CHALLENGE:

  • Severely atrophied alveolar ridge with insufficient bone volume for implant placement
  • ­­­­High complication rates and patient discomfort associated with large augmentations when using autologous bone grafts

AIM/APPROACH:

  • 3-dimensional augmentation of alveolar ridge by the fence technique for implant placement
  • At the same time reducing complication rates and patient discomfort

CLINICAL CASE

CLINICAL CHALLENGE:

  • Insufficient alveolar ridge width for implant placement
  • Donor site morbidity after autologous bone block harvesting and resorption of autologous bone

AIM/APPROACH:

  • Horizontal alveolar ridge augmentation with Geistlich Bio-Oss® and Geistlich Bio-Gide®
  • Minimizing autologous bone harvesting and resorption protection

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CLINICAL CASE

CONCLUSIONS:

  • Geistlich Mucograft® with a keratinized tissue strip was utilized to increase vestibular depth and gain additional keratinized tissue.
  • Augmentation of severely atrophied alveolar ridge provided sufficient bone for implant placement 8 months following augmentation.